欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报

• 研究报告 • 上一篇    下一篇

水分对具鞘微鞘藻构建人工藻结皮的作用

张丙昌**,王敬竹,张元明,邵华   

  1. (中国科学院新疆生态与地理研究所干旱区生物地理与生物资源重点实验室, 乌鲁木齐 830011)
  • 出版日期:2013-02-18 发布日期:2013-02-18

Roles of moisture in constructing man-made algal crust with Micocoleus vaginatus.

ZHANG Bing-chang, WANG Jing-zhu, ZHANG Yuan-ming, SHAO Hua   

  1. (Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)
  • Online:2013-02-18 Published:2013-02-18

摘要: 为探讨水分在利用室内培养具鞘微鞘藻构建人工藻结皮中的作用,本文研究了不同施水量和施水时间下人工藻结皮中的藻类生物量、结皮厚度、抗压强度和微结构变化.结果表明:利用具鞘微鞘藻在裸沙上接种,无水处理藻类生物量极低,无藻结皮形成.随着施水量的增加,藻结皮开始出现直至形成稳定的藻结皮,藻类生物量、结皮厚度和抗压强度显著增加,藻丝和胞外多糖逐渐增多,与沙粒缠绕成复杂的网状〖JP2〗结构.施水15 d,形成稳定的藻结皮,藻类生物量、结皮厚度和抗压强度最高.具鞘微鞘藻形成藻结皮的最适施水量是3~4 L·m-2·d-1,施水时间为15 d.土壤可利用水分可促进具鞘微鞘藻的代谢活动和胞外多糖合成,从而增加藻类生物量,提高其耐旱能力,早期的水分获得是其成功形成藻结皮的关键因素.研究结果将为利用荒漠藻类进行人工生物结皮恢复提供重要的理论依据.

Abstract:

To explore the roles of moisture in the construction of man-made algal crust with inoculated Micocoleus vaginatus, a laboratory experiment was conducted to study the variations of the microalgal biomass, algal crust thickness, crust compressive strength, and crust microstructure under six moisture doses and four moisture treatment intervals. When M. vaginatus was inoculated to the naked sands without moisture addition, the microalgal biomass was very low, and no algal crust was formed. With increasing dose of moisture, the microalgal biomass, algal crust thickness, and crust compressive strength increased significantly, and the algal filaments and extracellular polysaccharides (EPS) had a gradual increase, wrapped around the sands and formed a complex network. After 15 days moisture treatment, stable algal crust was formed, which had the highest microalgal biomass, crust thickness, and crust compressive strength. The optimal moisture dose for  M. vaginatus to form manmade algal crust was 3-4 L·m-2·d-1, and the addition of moisture should be continued for 15 d. The availability of the moisture promoted the metabolic processes of M. vaginatus and the synthesis of the algal EPS, which increased the microalgal biomass and its ability to resist desiccation. The moisture availability at early stage was the key factor for M. vaginatus to successfully form algal crust. This study could offer some guidance for the recovery of biological soil crusts in the field.