应用生态学报 ›› 2020, Vol. 31 ›› Issue (7): 2141-2150.doi: 10.13287/j.1001-9332.202007.019
孔垂华*
收稿日期:
2020-03-16
接受日期:
2020-04-26
出版日期:
2020-07-15
发布日期:
2021-01-15
通讯作者:
E-mail: kongch@cau.edu.cn
作者简介:
孔垂华, 男, 1962年生, 教授. 主要从事植物化学生态学研究. E-mail: kongch@cau.edu.cn
基金资助:
KONG Chui-hua*
Received:
2020-03-16
Accepted:
2020-04-26
Online:
2020-07-15
Published:
2021-01-15
Contact:
E-mail: kongch@cau.edu.cn
Supported by:
摘要: 植物间相互作用是生态学基础科学问题之一,植物能感受和识别共存同种或异种植物,进而调整生长、繁殖和防御策略。植物种间和种内的感受和识别大多是由植物产生释放的次生物质所介导,这类化学识别通讯可以启动相应的植物化感作用机制。近年发现,植物亲属间也存在着化学识别、地下根系通讯调控地上开花繁殖等植物种间和种内的化学作用关系。目前植物通过地上挥发物介导的植物化学作用已基本澄清,但根分泌物介导的植物地下化学作用机制及其信号物质还所知甚少。地下化学作用不仅决定根系侵入(接近)和躲避(排斥)行为,也能调控地上开花时间和花期。这样,植物间的化学作用还涉及植物地下和地上的协调互作。本文以植物化感作用和植物化学识别通讯及相应的化感物质和信号物质为基点,从植物亲属识别、根系化学识别和行为模式、地下化学作用调控地上开花繁殖3个方面综述植物种间和种内化学作用的研究进展,为全面理解植物间相互作用提供新视野。
孔垂华. 植物种间和种内的化学作用[J]. 应用生态学报, 2020, 31(7): 2141-2150.
KONG Chui-hua. Inter-specific and intra-specific chemical interactions among plants[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2141-2150.
[1] 孔垂华. 植物与其它有机体的化学作用:潜在的有害生物控制途径. 中国农业科学,2007,40(4): 712-720 [Kong C-H. Chemical interactions between plant and other organisms: A potential strategy for pest mana-gement. Scientia Agricultura Sinica, 2007, 40(4): 712-720] [2] 张月白, 娄永根. 植物与植食性昆虫化学互作研究进展. 应用生态学报, 2020, 31(7): 2151-2160 [Zhang Y-B, Lou Y-G. Research progresses in chemical interactions between plants and phytophagous insects. Chinese Journal of Applied Ecology,2020, 31(7): 2151-2160] [3] 吴劲松. 植物对病原微生物的“化学防御”: 植保素的生物合成及其分子调控机制. 应用生态学报, 2020, 31(7): 2161-2167 [ Wu J-S. The “chemical defense” of plants against pathogenic microbes: Phytoalexins biosynthesis and molecular regulations. Chinese Journal of Applied Ecology, 2020, 31(7): 2161-2167] [4] 孔垂华, 胡飞, 王朋. 植物化感(相生相克)作用. 北京: 高等教育出版, 2016 [Kong C-H, Hu F, Wang P. Allelopathy. Beijing: Higher Education Press, 2016] [5] Karban R. Plant Sensing and Communication. Chicago, IL, USA: University of Chicago Press, 2015 [6] Li YH, Xia ZC, Kong CH. Allelobiosis in the interfe-rence of allelopathic wheat with weeds. Pest Management Science, 2016, 72: 2146-2153 [7] Biedrzycki ML, Bais HP. Kin recognition in plants: Amysterious behaviour unsolved. Journal of Experimental Botany, 2010, 61: 4123-4128 [8] Kong CH, Zhang SZ, Li YH, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications, 2018, 9: 3867 [9] de Wit M, Kegge W, Evers JB, et al. Plant neighbor detection through touching leaf tips precedes phytochrome signals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 14705-14710 [10] Pierik R, Mommer L, Voesenek LACJ. Molecular mecha-nisms of plant competition: Neighbour detection and response strategies. Functional Ecology, 2013, 27: 841-853 [11] Trewavas AJ. Plant Behaviour and Intelligence. Oxford, UK: Oxford University Press, 2014 [12] Bouwmeester HJ, Matusova R, Sun ZK, et al. Secondary metabolite signaling in host-parasitic plant interactions. Current Opinion in Plant Biology, 2003, 6: 358-364 [13] Runyon JB, Mescher MC, De Moraes CM. Volatile chemical cues guide host location and host selection by parasitic plants. Science, 2006, 313: 1964-1967 [14] Baldwin IT, Halitschke R, Paschold A, et al. Volatile signaling in plant-plant interactions: “Talking Trees” in the genomics era. Science, 2006, 311: 812-815 [15] Heil M, Karban R. Explaining evolution of plant communication by airborne signals. Trends in Ecology & Evolution, 2010, 25: 137-144 [16] Zhang SZ, Li YH, Kong CH, et al. Interference of allelo-pathic wheat with different weeds. Pest Management Science, 2016, 72: 172-178 [17] Kong CH, Xuan TD, Khanh TD, et al. Allelochemicals and signaling chemicals in plants. Molecules, 2019, 24: 2737 [18] Farmer EE, Ryan CA. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciencesof the United States of America, 1990, 87: 7713-7716 [19] Erb M, Veyrat N, Robert CAM, et al. Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications, 2015, 6: 6273 [20] Cook CE, Whichard LP, Wall ME, et al.Germonation stimulants. 2. The structure of strigol-a potent seed germination stimulant for witchweed (Striga lutea Lour). Journal of American Chemical Society, 1972, 94: 6198-6199 [21] Yokota T, Sakai H, Okuno K, et al. Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry, 1998, 49: 1967-1973 [22] Xie XN, Yoneyama K, Kusumoto D, et al. Isolation and identification of alectrol as (+)-orobanchyl acetate, a novel germination stimulant for root parasitic plants. Phytochemistry, 2008, 69: 427-431 [23] Machin DC, Hamon-Josse M, Bennett T. Fellowship of the rings: A saga of strigolactones and other small signals. New Phytologist, 2020, 225: 621-636 [24] You LX, Wang P, Kong CH. The levels of jasmonic acid and salicylic acid in a rice-barnyardgrass coexistence system and their relation to rice allelochemicals. Biochemical Systematics and Ecology, 2011, 39: 491-497 [25] Martinez-Medina A, Fernandez I, Lok GB, et al. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytologist, 2017, 213: 1363-1377 [26] Li LL, Zhao HH, Kong CH. (-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. Journal of Experimental Botany, 2020, 71: 1540-1550 [27] Calabrese EJ, Baldwin LA. Hormesis: The dose-response revolution. Annual Review of Pharmacology and Toxicology, 2003, 43: 175-197 [28] van Kleunen M, Fischer M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist, 2005, 166: 49-60 [29] Pereira L, Sadras VO, Batista W, et al. Light-mediated self-organization of sunflower stands increases oil yield in the field. Proceedings of the National Academy of Sciencesof the United States of America, 2017, 114: 7975-7980 [30] 李洁, 孙庚, 胡霞,等. 植物的亲缘选择. 生态学报, 2014, 34(14): 3827-3838 [Li J, Sun G, Hu X, et al.Kin selection in plants. Acta Ecologica Sinica, 2014, 34(14): 3827-3838] [31] Nakamura RR. Plant kin selection. Evolutionary Theory, 1980, 5: 113-117 [32] Dudley SA, File AL. Kin recognition in an annual plant. Biology Letters, 2007, 3: 435-438 [33] Crepy MA, Casal JJ. Photoreceptor-mediated kin recognition in plants. New Phytologist, 2015, 205: 329-338 [34] Yang XF, Li LL, Xu Y, et al. Kin recognition in rice (Oryza sativa) lines. New Phytologist, 2018, 220: 567-578 [35] Murphy GP, Swanton CJ, Van Acker RC, et al. Kin recognition, multilevel selection and altruism in crop sustainability. Journal of Ecology, 2017, 105: 930-934 [36] Wu CC, Diggle PK, Friedman WE. Kin recognition within a seed and the effect of genetic relatedness of an endosperm to its compatriot embryo on maize seed deve-lopment. Proceedings of the National Academy of Sciencesof the United States of America, 2013, 110: 2217-2222 [37] Fang SQ, Gao X, Deng Y, et al. Crop root behavior coordinates phosphorus status and neighbors: From field studies to three-dimensional in situ reconstruction of root system architecture. Plant Physiology, 2011, 155: 1277-1285 [38] Kong CH, Chen XH, Hu F, et al. Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Management Science, 2011, 67: 1100-1106 [39] Semchenko M, Saar S, Lepik A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytologist, 2014, 204: 631-637 [40] Karban R, Shiojiri K, Ishizaki S, et al. Kin recognition affects plant communication and defence. Proceedings of the Royal Society B: Biological Sciences, 2013, 280: 20123062 [41] Yamawo A. Relatedness of neighboring plants alters the expression of indirect defense traits in an extrafloral nectary-bearing plant. Evolutionary Biology, 2015, 42: 12-19 [42] Kalske A, Shiojiri K, Uesugi A, et al. Insect herbivory selects for volatile-mediated plant-plant communication. Current Biology, 2019, 29:3128 [43] Heap I. Global perspective of herbicide-resistant weeds. Pest Management Science, 2014, 70: 1306-1315 [44] 赵欢欢. 水稻化感品种和杂草的化学相互作用与机制. 博士论文. 北京: 中国农业大学,2019 [Zhao H-H. Chemical Interactions and Mechanisms between Allelopathic Rice and Paddy Weed. PhD Thesis. Beijing: China Agricultural University, 2019] [45] Délye C, Jasieniuk M, Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends in Gene-tics, 2013, 29: 649-658 [46] Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515: 505-511 [47] Semchenko M, John EA, Hutchings MJ. Effects of physi-cal connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytologist, 2007, 176: 644-654 [48] Chen BJW, During HJ, Anten NPR. Detect thy neighbor: Identity recognition at the root level in plants. Plant Science, 2012, 195: 157-167 [49] Hodge A. Root decisions. Plant, Cell & Environment, 2009, 32: 628-640 [50] Yang LX, Wang P, Kong CH. Effect of larch (Larix gmelini Rupr.) root exudates on Manchurian walnut (Juglans mandshurica Maxim.) growth and soil juglone in a mixed-species plantation. Plant and Soil, 2010, 329: 249-258 [51] Li B, Li YY, Wu HM, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciencesof the United States of America, 2016, 113: 6496-6501 [52] Xia ZC, Kong CH, Chen LC, et al. A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology, 2016, 97: 2283-2292 [53] Yang XF, Kong CH. Interference of allelopathic rice with paddy weeds at the root level. Plant Biology, 2017, 19: 584-591 [54] Falik O, Reides P, Gersani M, et al. Root navigation by self inhibition. Plant, Cell & Environment, 2005, 28: 562-569 [55] Karban R. Plant behavior and communication. Ecology Letters, 2008, 11: 727-739 [56] Munguía-Rosas MA, Ollerton J, Parra-Tabla V, et al. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecology Letters, 2011, 14: 511-521 [57] Andrés F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 2012, 13: 627-639 [58] Song YH, Ito S, Imaizumi T. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends in Plant Science, 2013, 18: 575-583 [59] Elzinga JA, Atlan A, Biere A, et al. Time after time: Flowering phenology and biotic interactions. Trends in Ecology & Evolution, 2007, 22: 432-439 [60] Novoplansky A. Picking battles wisely: Plant behaviour under competition. Plant, Cell and Environment, 2009, 32: 726-741 [61] Sola AJ, Ehrlén J. Vegetative phenology constrains the onset of flowering in the perennial herb Lathyrus vernus. Journal of Ecology, 2007, 95: 208-216 [62] Falik O, Hoffmann I, Novoplansky A. Say it with flo-wers: Flowering acceleration by root communication. Plant Signaling & Behavior, 2014, 9: e28258 [63] Karban R, Wetzel WC, Shiojiri K, et al. Deciphering the language of plant communication: Volatile chemotypes of sagebrush. New Phytologist, 2014, 204: 380-385 [64] Kong XX, Luo LD, Zhao JJ, et al. Expression of FRIGIDA in root inhibits flowering in Arabidopsis thaliana. Journal of Experimental Botany, 2019, 70: 5101-5114 [65] Randoux M, Jeauffre J, Thouroude T, et al. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. Journal of Experimental Botany, 2012, 63: 6543-6554 [66] 李巍, 徐启江. 被子植物开花时间和花器官发育的表观遗传调控研究进展. 园艺学报, 2014, 41(6): 1245-1256 [Li W, Xu Q-J. Epigenetic research progress on flowering time and flower organ development in Angiosperms. Acta Horticulturae Sinica, 2014, 41(6): 1245-1256] [67] Obeso JR. The costs of reproduction in plants. New Phytologist, 2002, 55: 321-348 [68] Xu MM, Galhano R, Wiemann P, et al. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytologist, 2012, 193: 570-575 [69] Weston LA, Alsaadawi IS, Baerson SR. Sorghum alle-lopathy-from ecosystem to molecule. Journal of Chemical Ecology, 2013, 39: 142-153 [70] Park S, Choi MJ, Lee JY, et al. Molecular and biochemical analysis of two rice flavonoid 3′-hydroxylase to evaluate their roles in flavonoid biosynthesis in rice grain. International Journal of Molecular Sciences, 2016, 17: 1549-1562 [71] 郭婉玑, 张子良, 刘庆, 等. 根系分泌物收集技术研究进展. 应用生态学报, 2019, 30(11): 3951-3962 [Gu W-J, Zhang Z-L, Liu Q,et al. Research progress of root exudates collection technology. Chinese Journal of Applied Ecology, 2019, 30(11): 3951-3962] [72] 孔垂华. 作物化感品种对农田杂草的调控. 植物保护学报, 2018, 45(5): 961-970 [Kong C-H. Allelopathic crop cultivars for weed management in cropping systems. Journal of Plant Protection, 2018, 45(5): 961-97] |
[1] | 邓丽丽, 吕培, 黄学奇, 张震, 王力超, 刘姚. 红薯水提物对外来入侵植物喜旱莲子草生长的化感影响 [J]. 应用生态学报, 2020, 31(7): 2202-2210. |
[2] | 张泰劼, 田兴山, 张纯, 吴丹丹. 阔叶丰花草与2种菊科植物之间的化感作用 [J]. 应用生态学报, 2020, 31(7): 2211-2218. |
[3] | 董淑琦, 曹鹏, 胡春艳, Sher Alam, 原向阳, 杨雪芳, 郭平毅. 谷子秸秆不同部位水浸液对3种杂草的化感作用 [J]. 应用生态学报, 2020, 31(7): 2243-2250. |
[4] | 李春英, 田瑶, 于美婷, 赵春建. 苘麻挥发油对小麦、玉米和大豆萌发及幼苗生长的化感作用 [J]. 应用生态学报, 2020, 31(7): 2251-2256. |
[5] | 赵芸, 杨云海, 王凯博, 范黎明, 苏发武, 叶敏. 牛至挥发油的化学成分及其化感作用 [J]. 应用生态学报, 2020, 31(7): 2257-2263. |
[6] | 杭伟, 戈玉莹, 刘浩宇, 江浩然, 张世航, 陶冶. 羽枝青藓和瘤柄匐灯藓对入侵植物种子萌发和幼苗生长的影响 [J]. 应用生态学报, 2020, 31(7): 2271-2278. |
[7] | 赵启安, 刘博, 张玥, 刘琴, 张莉环, 刘瑞芳, 杨宁. 磷脂酶Dα1与H2S参与冬凌草甲素对拟南芥的化感作用 [J]. 应用生态学报, 2020, 31(3): 959-968. |
[8] | 刘清松,李云河**,陈秀萍,彭于发. 转基因抗虫植物-植食性昆虫-天敌间化学通讯的研究进展 [J]. 应用生态学报, 2014, 25(8): 2431-2439. |
[9] | 赵娟1,薛泉宏2**,杜军志3,陈姣姣2. 两株镰孢菌的鉴定及其粗毒素对甜瓜幼苗的化感作用 [J]. 应用生态学报, 2013, 24(1): 142-148. |
[10] | 宋圆圆1,2,3,黄珂3,4,石木标4,陈敏1,2,3,曾任森1,2,3**. 链霉菌6803菌株对植物的化感作用 [J]. 应用生态学报, 2012, 23(10): 2728-2736. |
[11] | . 基于生态位理论的典型草原铁杆蒿种群化感作用 [J]. 应用生态学报, 2012, 23(03): 673-678. |
[12] | 刘忠玲,王庆成,郝龙飞. 白桦、落叶松不同器官水浸液对种子萌发和播种苗生长的种间化感作用 [J]. 应用生态学报, 2011, 22(12): 3138-3144. |
[13] | 周艳丽,王艳,李金英,薛艳杰. 大蒜根系分泌物的化感作用 [J]. 应用生态学报, 2011, 22(05): 1368-1372. |
[14] | 李 坤,郭修武,郭印山,李成祥,谢洪刚,胡禧熙,张立恒,孙英妮. 葡萄根系浸提液的化感作用 [J]. 应用生态学报, 2010, 21(07): 1779-1784. |
[15] | 肖溪;楼莉萍;李华;陈英旭. 沉水植物化感作用控藻能力评述 [J]. 应用生态学报, 2009, 20(03): 705-712 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||