[1] Wang P, Wang Y, Wu QS. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil and Tillage Research, 2016, 155: 54-61 [2] Wei H, Xiang Y, Liu Y, et al. Effects of sod cultivation on soil nutrients in orchards across China: A meta-analysis. Soil and Tillage Research, 2017, 169: 16-24 [3] Porcel M, Cotes B, Castro J, et al. The effect of resident vegetation cover on abundance and diversity of green lacewings (Neuroptera: Chrysopidae) on olive trees. Journal of Pest Science, 2017, 90: 195-206 [4] Dong J, Wu X, Xu C, et al. Evaluation of lucerne cover crop for improving biological control of Lyonetia clerkella (Lepidoptera: Lyonetiidae) by means of augmenting its predators in peach orchards. The Great Lakes Entomologist, 2018, 38: 186-200 [5] 林娟, 殷全玉, 杨丙钊, 等. 植物化感作用研究进展. 中国农学通报,2007, 23(1): 78-82 [Lin J, Yin Q-Y, Yang B-Z, et al. Review on allelopathy of plants. Chinese Agricultural Science Bulletin, 2007, 23(1): 78-82] [6] Meiners SJ, Kong CH, Ladwig LM, et al. Developing an ecological context for allelopathy. Plant Ecology, 2012, 213: 1221-1227 [7] Wiersema JH, Delprete PG, Kirkbride Jr JH, et al. A new weed in Florida, Spermacoce latifolia, and the distinction between S. alata and S. latifolia (Spermaco-ceae, Rubiaceae). Castanea, 2017, 82: 114-131 [8] Choudhury KD, Choudhury MD, Baruah M. Antibacterial activity of some plants belonging to the family Rubiaceae: A review. World Journal of Pharmacy and Pharmaceutical Sciences, 2012, 1: 1170-1192 [9] Wong KY, Vikram P, Chiruvella KK, et al. Phytochemical screening and antimicrobial potentials of Borreriasps (Rubiaceae). Journal of King Saud University-Science, 2015, 27: 302-311 [10] 罗应, 徐巧林, 董丽梅, 等. 阔叶丰花草的三萜酸类化学成分研究. 热带亚热带植物学报, 2015, 23(4): 463-468 [Luo Y, Xu Q-L, Dong L-M, et al. Triterpenic acids from Spermacoce latifolia. Journal of Tropical and Subtropical Botany, 2015, 23(4): 463-468] [11] Manandlar NP. An inventory of some vegetable drug resources of Makawanpur district Nepal. Fitoterapia, 1995, 66: 231-238 [12] Abbood A, Kassim AB, Jawad HSA, et al. Effects of feeding the herb Borreria latifolia on the meat quality of village chickens in Malaysia. Poultry Science, 2017, 96: 1767-1782 [13] 胡飞, 孔垂华. 胜红蓟化感作用研究. Ⅰ. 水溶物的化感作用及其化感物质分离鉴定. 应用生态学报, 1997, 8(3): 304-308 [Hu F, Kong C-H. Allelopathy of Ageratum conyzoides. Ⅰ. Allelopathy of Ageratum conyzoides aqueous extract and isolation and identification of its allelochemicals. Chinese Journal of Applied Ecology, 1997, 8(3): 304-308] [14] 刘湘永, 苏翠, 沈丽春. 白花鬼针草水浸提液对4种植物的化感作用. 广东农业科学, 2011, 38(21): 141-144 [Liu X-Y, Su C, Shen L-C. Allelopathic effects of aqueous extracts from Bidens pilosa var. radiata on four species. Guangdong Agricultural Sciences, 2011, 38(21): 141-144] [15] 刘忠玲, 王庆成, 郝龙飞. 白桦、落叶松不同器官水浸液对种子萌发和播种苗生长的种间化感作用. 应用生态学报, 2011, 22(12): 3138-3144 [Liu Z-L, Wang Q-C, Hao L-F. Interspecific allelopathic effect of different organs' aqueous extracts of Betula platyphylla and Larix olgensis on their seed germination and seedling growth. Chinese Journal of Applied Ecology, 2011, 22(12): 3138-3144] [16] 陈锋, 孟永杰, 帅海威, 等. 植物化感物质对种子萌发的影响及其生态学意义. 中国生态农业学报, 2017, 25(1): 36-46 [Chen F, Meng Y-J, Shuai H-W, et al. Effects of plant allelochemicals on seed germination and its ecological significance. Chinese Journal of Eco-Agriculture, 2017, 25(1): 36-46] [17] Blum U. General Background for plant-plant allelopathic interactions// Blum U, ed. Plant-Plant Allelopathic Interactions. Ⅲ. Partitioning and Seedling Effects of Phenolic Acids as Related to their Physicochemical and Conditional Properties. Berlin: Springer, 2019: 27-48 [18] 陶文琴, 许镇健, 黄丽宜, 等. 阔叶丰花草对茄科作物的化感效应. 贵州农业科学, 2014, 42(10): 91-94 [Tao W-Q, Xu Z-J, Huang L-Y, et al. Allelopathic effect of alien invasive Borreria latifolia on Solanaceae crops. Guizhou Agricultural Sciences, 2014, 42(10): 91-94] [19] 马永林, 马跃峰, 郭成林, 等. 阔叶丰花草水浸提液对5种作物的化感作用. 种子, 2016, 35(10): 32-35 [Ma Y-L, Ma Y-F, Guo C-L, et al. Allelopathy of extract from the Spermacoce latifolia Aubl. on five plants. Seed, 2016, 35(10): 32-35] [20] Zhang SZ, Li YH, Kong CH , et al. Interference of allelopathic wheat with different weeds. Pest Management Science, 2016, 72: 172-178 [21] Li YH, Xia ZC, Kong CH. Allelobiosis in the interfe-rence of allelopathic wheat with weeds. Pest Management Science, 2016, 72: 2146-2153 [22] Xuan TD, Shinkichi T, Hong NH, et al. Assessment of phytotoxic action of Ageratum conyzoides L. (billy goat weed) on weeds. Crop Protection, 2004, 23: 915-922 [23] Khanh TD, Cong LC, Xuan TD, et al. Allelopathic plants: 20. Hairy beggarticks (Bidens pilosa L.). Allelo-pathy Journal, 2009, 24: 243-254 [24] 郑良永, 胡剑, 林昌华, 等. 作物连作障碍的产生及防治. 热带农业科学, 2005, 25(2): 62-66 [Zheng L-Y, Hu J, Lin C-H, et al. The production of succession cropping obstacles and its prevention and cure steps. Chinese Journal of Tropical Agriculture, 2005, 25(2): 62-66] [25] 尹玉玲, 周劲松, 汤泳萍, 等. 芦笋连作障碍中的自毒物质研究进展. 生态科学, 2019, 38(5): 204-209 [Yin Y-L, Zhou J-S, Tang Y-P, et al. Review on autotoxicity of asparagus (Asparagus officinalis L.) in continuous cropping system. Ecological Science, 2019, 38(5): 204-209] [26] 李孝刚, 张桃林, 王兴祥. 花生连作土壤障碍机制研究进展. 土壤, 2015, 47(2): 266-271 [Li X-G, Zhang T-L, Wang X-X. Advances in mechanism of peanut continuous cropping obstacle. Soils, 2015, 47(2): 266-271] [27] 胡飞, 孔垂华, 徐效华, 等. 胜红蓟黄酮类物质对柑桔园主要病原菌的抑制作用. 应用生态学报, 2002, 13(9): 1166-1168 [Hu F, Kong C-H, Xu X-H, et al. Inhibitory effect of flavones from Ageratum conyzoides on the major pathogens in citrus orchard. Chinese Journal of Applied Ecology, 2002, 13(9): 1166-1168] [28] Owen MD. Diverse approaches to herbicide-resistant weed management. Weed Science, 2016, 64: 570-584 [29] Santonja M, Bousquet-Mélou A, Greff S, et al. Allelopathic effects of volatile organic compounds released from Pinus halepensis needles and roots. Ecology and Evolution, 2019, 9: 8201-8213 [30] Fernandez C, Santonja M, Gros R, et al. Allelochemicals of Pinus halepensis as drivers of biodiversity in Medi-terranean open mosaic habitats during the colonization stage of secondary succession. Journal of Chemical Ecology, 2013, 39: 298-311 |