[1] 刘迎春, 高显连, 付超, 等. 基于森林资源清查数据估算中国森林生物量固碳潜力. 生态学报, 2019, 39(11): 209-217 [2] Wang XP, Fang JY, Zhu B. Forest biomass and root-shoot allocation in Northeast China. Forest Ecology and Management, 2008, 255: 4007-4020 [3] 王效科, 冯宗炜, 欧阳志云. 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 2011, 12(1): 13-16 [4] 徐新良, 曹明奎, 李克让. 中国森林生态系统植被碳储量时空动态变化研究. 地理科学进展, 2007, 26(6): 1-10 [5] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 2005, 25(11): 2875-2882 [6] Houghton RA. Converting terrestrial ecosystems from sources to sinks of carbon. Ambio, 1996, 25: 267-272 [7] Gower ST, Krankina O, Olson RJ, et al. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecological Applications, 2001, 11: 1395-1411 [8] Wang XW, Weng YH, Liu GF, et al. Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances. Forest Ecology and Management, 2015, 358: 344-352 [9] Martin AR, Gezahegn S, Thomas SC. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Canadian Journal of Forest Research, 2015, 45: 744-757 [10] Gao B, Taylor AR, Chen HY, et al. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. Forest Ecology and Management, 2016, 375: 191-199 [11] Dong LH, Zhang LJ, Li FR. Allometry and partitioning of individual tree biomass and carbon of Abies nephrolepis Maxim in northeast China. Scandinavian Journal of Forest Research, 2016, 31: 399-411 [12] Zhang QZ, Wang CK, Wang XC, et al. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management, 2009, 258: 722-727 [13] Elias M, Potvin C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research, 2003, 33: 1039-1045 [14] 高慧淋, 李凤日, 贾炜玮, 等. 两种方法预估红松立木含碳量的精度. 生态学报, 2014, 34(24): 7365-7375 [15] Widagdo FRA, Li FR, Zhang LJ, et al. Aggregated biomass model systems and carbon concentration variations for tree carbon quantification of natural Mongolian oak in Northeast China. Forests, 2020, 11: 397 [16] Dong LH, Liu YS, Zhang LJ, et al. Variation in carbon concentration and allometric equations for estimating tree carbon contents of 10 broadleaf species in natural forests in Northeast China. Forests, 2019, 10: 928 [17] Balboa MA, Rodriguez SR, Merino A, et al. Temporal variations and distribution of carbon stocks in above-ground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. Forest Ecology and Management, 2006, 237: 29-38 [18] 董利虎. 东北林区主要树种及林分类型生物量模型研究. 博士论文. 哈尔滨: 东北林业大学, 2015 [19] 董利虎, 刘永帅, 宋博, 等. 立木含碳量估算方法比较. 林业科学, 2020, 56(4): 46-54 [20] Brunori A, Dini F, Cantini C, et al. Biomass and volume modelling in Olea europaea L. cv. ‘Leccino'. Trees-Structure and Function, 2017, 31: 1859-1874 [21] Kapinga K, Syampungani S, Kasubika R, et al. Species-specific allometric models for estimation of the above-ground carbon stock in miombo woodlands of Copperbelt Province of Zambia. Forest Ecology and Management, 2018, 417: 184-196 [22] Zhao D, Kane M, Markewitz D, et al. Additive tree biomass equations for Midrotation loblolly pine plantations. Forest Science, 2015, 61: 613-623 [23] Kralicek K, Huy B, Poudel KP. Simultaneous estimation of above- and below-ground biomass in tropical forests of Vietnam. Forest Ecology and Management, 2017, 390: 147-156 [24] Dong LH, Zhang LJ, Li FR. A three-step proportional weighting system of nonlinear biomass equations. Forest Science, 2015, 61: 35-45 [25] Parresol BR. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, 2001, 31: 865-878 [26] 宋博, 李凤日, 董利虎, 等. 黑龙江西部地区人工小黑杨立木可加性生物量模型. 北京林业大学学报, 2018, 40(11): 58-68 [27] 曾伟生, 骆期邦, 贺东北. 论加权回归与建模. 林业科学, 1999, 35(5): 5-11 [28] 陆龙龙, 袁靓, 范春楠, 等. 长白山林区主要树种含碳率及其差异分析. 北华大学学报: 自然科学版, 2018, 19(2): 164-169 [29] 廖国莉, 段劼, 贾忠奎, 等. 辽东地区不同林龄长白落叶松人工林生态系统碳储量分配特征. 东北林业大学学报, 2020, 48(11): 10-15 [30] Nemli G, Gezer ED, Yildiz S, et al. Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives. Bioresource Technology, 2006, 97: 2059-2064 [31] Bert D, Danjon F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster. Forest Ecology and Management, 2006, 222: 279-295 [32] Widagdo F, Li FR, Xie LF, et al. Intra- and inter-species variations in carbon content of 14 major tree species in Northeast China. Journal of Forestry Research, 2021, 32: 12 [33] Wang CK. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 2006, 222: 9-16 [34] Dong LH, Zhang Y, Xie LF, et al. Comparison of tree biomass modeling approaches for larch (Larix olgensis Henry) trees in Northeast China. Forests, 2020, 11: 202 [35] Zhu HY, Weng YH, Zhang HG, et al. Comparing fast-and slow-growing provenances of Picea koraiensis in biomass, carbon parameters and their relationships with growth. Forest Ecology and Management, 2013, 307: 178-185 |