欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2023, Vol. 35 ›› Issue (5): 1379-1387.doi: 10.13287/j.1001-9332.202405.022

• 研究论文 • 上一篇    下一篇

光伏+矿山生态修复模式的减碳增汇潜力评估

钟蕊1,2, 王娇月2,3,4, 徐婷婷2,3,4, 郗凤明2,3,4*, 韩美1, 胡琴琴2,3,4, 邴龙飞2,3,4, 尹岩2,3,4   

  1. 1山东师范大学地理与环境学院, 济南 250358;
    2中国科学院沈阳应用生态研究所, 沈阳 110016;
    3中国科学院污染生态与环境工程重点实验室, 沈阳 110016;
    4辽宁省陆地生态系统碳中和重点实验室, 沈阳 110016
  • 收稿日期:2023-10-27 接受日期:2024-03-14 出版日期:2024-05-18 发布日期:2024-11-18
  • 通讯作者: *E-mail: xifengming@iae.ac.cn
  • 作者简介:钟 蕊, 女, 1997年生, 硕士研究生。主要从事矿区新能源开发研究。E-mail: 2021020777@stu.sdnu.edu.cn
  • 基金资助:
    中国科学院沈阳应用生态研究所重大项目(IAEMP202201)、中国科学院青年创新促进会会员项目(2020201,Y202050)和辽宁省自然科学基金面上基金项目(2022-MS-031)

Assessment of carbon reduction and sink enhancement potential of photovoltaic+mining ecological restoration model

ZHONG Rui1,2, WANG Jiaoyue2,3,4, XU Tingting2,3,4, XI Fengming2,3,4*, HAN Mei1, HU Qinqin2,3,4, BING Longfei2,3,4, YIN Yan2,3,4   

  1. 1College of Geography and Environment, Shandong Normal University, Jinan 250358, China;
    2Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
    3Key Laboratory of Pollution Ecology and Environment Engineering of Chinese Academy of Sciences, Shenyang 110016, China;
    4Liaoning Province Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China
  • Received:2023-10-27 Accepted:2024-03-14 Online:2024-05-18 Published:2024-11-18

摘要: 光伏+生态修复的能源化矿山生态修复模式为纾解光伏发展用地困境、解决大面积矿山废弃地亟待修复的需求提供了突破口。本研究以辽宁省中部某矿区为例,构建林光互补、农光互补和草光互补3种光伏+矿山生态修复模式,结合生命周期评价方法,核算光伏发电系统碳减排量和生态系统增汇量,评估光伏+矿山生态修复的减碳增汇潜力。结果表明:光伏+矿山生态修复模式下,矿山年均减碳增汇量为514.93 t CO2·hm-2,每兆瓦光伏电站年均减碳量为1242.94 t CO2。该矿区若采用光伏+生态修复模式,25年计入期内减碳增汇总量630.43~779.24万t CO2。光伏+矿山生态修复模式的减碳增汇量主要源于光伏清洁发电产生的碳减排,占比96.4%~99.4%,生态系统增汇量贡献较小,仅占总量的0.6%~3.7%。光伏+不同修复模式下的减碳增汇潜力不同,其中,林光互补减碳增汇潜力最大(711.89万t),其次为农光互补(704.07万t),草光互补减碳增汇潜力最小(697.98万t)。构建“光伏+矿山生态修复”模式可有效发挥光伏发电的减碳及矿山生态修复的增汇双重效益,助力我国碳中和目标实现。

关键词: 光伏发电, 矿山生态修复, 生态系统固碳, 新能源碳减排, 生命周期评价

Abstract: The energy oriented mine ecological restoration mode of photovoltaic+ecological restoration provides a breakthrough for alleviating the dilemma of photovoltaic land development and solving the urgent need for restoration of abandoned mining land. Taking a mining area in central Liaoning Province as an example, we established three photovoltaic+mining ecological restoration modes, including forest-photovoltaic complementary, agriculture-photovoltaic, and grass photovoltaic complementation. Combined with the life cycle assessment method, we calculated and assessed the potential of photovoltaic+mining ecological restoration in carbon reduction and sink enhancement. The average annual carbon reduction and sink increase was 514.93 t CO2·hm-2 under the photovoltaic+mining ecological restoration mode, while the average annual carbon reduction per megawatt photovoltaic power station was 1242.94 t CO2. The adoption of photovoltaic+ecological restoration mode in this mining area could make carbon reduction and sink enhancement 6.30-7.79 Mt CO2 during 25 years. The carbon reduction and sink increment mainly stemmed from the photovoltaic clean power generation induced carbon reduction, accounting for 96.4%-99.4%, while the contribution of ecosystem carbon sink increment was small, accounting for only 0.6%-3.7% of the total. Among different photovoltaic+ecological restoration modes, the carbon reduction and sink increment was the largest in forest-photovoltaic complementary (7.11 Mt CO2), followed by agriculture-photovoltaic (7.04 Mt CO2), and the least in grass photovoltaic complementation (6.98 Mt CO2). Constructing the development mode of “photovoltaic+mining ecological restoration” could effectively leverage the dual benefits of reducing emissions from photovoltaic power generation and increase sinks from mining ecological restoration, which would be helpful for achieving the goal of carbon neutrality in China.

Key words: photovoltaic power generation, mine ecological restoration, carbon sequestration of ecosystem, new energy carbon reduction, life cycle assessment