[1] Gadow KV, Zhang CY, Wehenkel C, et al. Forest Structure and Diversity. Amsterdam, the Netherlands: Springer, 2012 [2] Tomlinson PB. Tree architecture: New approaches help to define the elusive biological property of tree form. American Scientist, 1983, 71: 141-149 [3] Pretzsch H. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecology and Management, 2014, 327: 251-264 [4] Calders K, Adams J, Armston J, et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sensing of Environment, 2020, 251: 102-112 [5] Calders K, Lewis P, Disney M, et al. Investigating assumptions of crown archetypes for modelling LiDAR returns. Remote Sensing of Environment, 2013, 134: 39-49 [6] Calders K, Niall O, Disney M, et al. Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index. Agricultural and Forest Meteorology, 2018, 252: 231-240 [7] Zenner EK. Differential growth response to increasing growing stock and structural complexity in even- and uneven-sized mixed Picea abies stands in southern Finland. Canadian Journal of Forest Research, 2016, 46: 1195-1204 [8] Mandelbrot BB. The fractal geometry of nature. American Journal of Physics, 1983, 51: 286-287 [9] 郭华, 王孝安, 肖娅萍. 秦岭太白红杉种群空间分布格局动态及分形特征研究. 应用生态学报, 2005, 16(2): 227-232 [10] 李艳丽, 杨华, 亢新刚, 等. 长白山云冷杉针阔混交林天然更新空间分布格局及其异质性. 应用生态学报, 2014, 25(2): 311-317 [11] 赵维俊, 刘贤德, 敬文茂, 等. 祁连山青海云杉林群落结构的空间异质性. 应用生态学报, 2015, 26(9): 2591-2599 [12] 兰航宇, 段文标, 陈立新, 等. 不同林型树倒林隙内微立地类型的土壤微团聚体组成及其分形特征. 应用生态学报, 2020, 31(4): 1097-1105 [13] 杜雅仙, 樊瑾, 李诗瑶, 等. 荒漠草原不同植被微斑块土壤粒径分布分形特征与养分的关系. 应用生态学报, 2019, 30(11): 3716-3724 [14] 罗雅曦, 刘任涛, 张静, 等. 腾格里沙漠草方格固沙林土壤颗粒组成、分形维数及其对土壤性质的影响. 应用生态学报, 2019, 30(2): 525-535 [15] 马克明, 祖元刚. 羊草种群地上部生物量与株高的分形关系. 应用生态学报, 1997, 8(4): 417-420 [16] 何池全, 赵魁义. 毛果苔草种群地上生物量与株长或鞘高分形特征. 应用生态学报, 2003, 14(4): 640-642 [17] 朱启疆, 戎太宗, 孙睿, 等. 林火扩展的分形模拟案例研究. 中国科学: 技术科学, 2000, 30(增刊1): 106-112 [18] 蒋礼, 周建军. 林火初期蔓延的分形模型. 火灾科学, 1994(1): 8 [19] 蒋礼. 森林火灾火场周长分形模型的研究. 中南林业科技大学学报, 1995, 15(2): 170-173 [20] 魏国芹, 曹辉, 孙玉刚, 等. 硫化氢对淹水平邑甜茶根系形态构型、叶片活性氧和光合特性的影响. 应用生态学报, 2017, 28(10): 3267-3273 [21] 张扬, 李程远, 韩少杰, 等. 典型黑土区主要树种根系构型特征及其对固土能力的影响. 应用生态学报, 2021, 32(5): 1726-1734 [22] 王浩, 黄晨璐, 杨方社, 等. 砒砂岩区沙棘根系的生境适应性. 应用生态学报, 2019, 30(1): 157-164 [23] 谢春华, 魏杰, 关文彬, 等. 长江上游暗针叶林优势树种峨嵋冷杉的树体分维结构研究. 应用生态学报, 2002, 13(7): 769-772 [24] 赵相健, 王孝安. 太白红杉顶芽动态及其对分枝格局的影响. 应用生态学报, 2005, 16(1): 25-28 [25] 周元满, 聂页, 刘美欣, 等. 天然红海榄树冠结构的分形特征. 中南林业科技大学学报, 2012, 32(8): 37-41 [26] 刘兆刚, 刘继明, 李凤日, 等. 樟子松人工林树冠结构的分形分析. 植物研究, 2005, 25(4): 465-470 [27] 黄长林, 邓婷婷, 杨洲凌, 等. 木材损伤的Kaiser点声发射信号分形特征研究. 木材科学与技术, 2022, 36(2): 36-41 [28] 贾娜, 郭佳欣, 温潍齐, 等. 应用改进差分盒维数法对木材表面粗糙度的三维表征. 东北林业大学学报, 2019, 47(9): 76-80 [29] 张绍群, 花军, 许威, 等. 木材抗剪强度与分形维数的关系及断口特征. 林业科学, 2015, 51(6): 127-134 [30] 杜华强, 葛宏立, 范文义, 等. 分形理论在马尾松松材线虫病发病早期高光谱探测中的应用. 林业科学, 2009, 45(6): 68-76 [31] 杜华强, 范文义, 赵宪文, 等. 基于Matlab遥感数据分形及地统计分析软件实现. 北京林业大学学报, 2005, 10(5): 92-97 [32] 郭庆华, 刘瑾, 陶胜利, 等. 激光雷达在森林生态系统监测模拟中的应用现状与展望. 科学通报, 2014, 59(6): 459-478 [33] Seidel D. A holistic approach to determine tree structural complexity based on laser scanning data and fractal analysis. Ecology and Evolution, 2017, 8: 128-134 [34] Seidel D, Ehbrecht M, Dorji Y, et al. Identifying architectural characteristics that determine tree structural complexity. Trees, 2019, 33: 911-919 [35] Seidel D, Peter A, Martin E, et al. Applying fractal analysis to stem distribution maps. Ecological Indicators, 2018, 93: 243-246 [36] Osawa A, Kurachi N. Spatial leaf distribution and self-thinning exponent of Pinus banksiana and Populus tre-muloides. Trees, 2004, 18: 327-338 [37] 高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响. 南京林业大学学报: 自然科学版, 2023, 47(6): 85-94 [38] 周泽宇, 周超凡, 胡兴国, 等. 基于距离相关Hegyi指数的云冷杉天然林单木胸径生长模型. 北京林业大学学报, 2023, 45(10): 59-69 [39] Seidel D, Annighöfer P, Stiers M, et al. How a measure of tree structural complexity relates to architectural benefit-to-cost ratio, light availability, and growth of trees. Ecology and Evolution, 2019, 9: 7134-7142 [40] Saarinen N, Calders K, Kankare V, et al. Understan-ding 3D structural complexity of individual Scots pine trees with different management history. Ecology and Evolution, 2021, 11: 2561-2572 [41] Dorji Y, Annighoefer P, Ammer C, et al. Response of beech (Fagus sylvatica L.) trees to competition: New insights from using fractal analysis. Remote Sensing, 2019, 11: 2656 [42] Puettmann KJ, Wilson SM, Baker SC, et al. Silvicul-tural alternatives to conventional even-aged forest mana-gement: What limits global adoption? Forest Ecosystems, 2015, 2: 8 [43] Katja F, Julia K, Susan C, et al. Can retention forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology, 2014, 51: 1669-1679 [44] Hardiman BS, Bohrer G, Gough CM, et al. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 2011, 92: 1818-1827 |