[1] Malmstrom CM, Thompson MV, Juday GP, et al. Interannual variation in global-scale net primary production: Testing model estimates. Global Biogeochemical Cycles, 1997, 11: 367-392 [2] Hasenaur H, Nemani RR, Schadauer K, et al. Forest growth response to changing climate between 1961 and 1990 in Austria. Forest Ecology and Management, 1999, 122: 209-219 [3] 蔡礼蓉, 匡旭, 房帅, 等. 长白山阔叶红松林3个常见树种径向生长的影响因素. 应用生态学报, 2017, 28(5): 1407-1413 [Cai L-R, Kuang X, Fang S, et al. Factors influencing tree radial growth of three common species in broad-leaved Korean pine mixed forests in Changbai Mountains, China. Chinese Journal of Applied Ecology, 2017, 28(5): 1407-1413] [4] 吴泽民, 黄成林, 马青山. 黄山松年轮生长和气候的关系. 应用生态学报, 1999, 10(2): 147-150 [Wu Z-M, Huang C-L, Ma Q-S. Relationship between tree-ring growth of Pinus taiwanensis and climatic factors. Chinese Journal of Applied Ecology, 1999, 10(2): 147-150] [5] 韩艳刚, 周旺明, 齐麟, 等. 长白山树木径向生长对气候因子的响应. 应用生态学报, 2019, 30(5): 1513-1520 [Han Y-G, Zhou W-M, Qi L, et al. Tree radial growth-climate relationship in Changbai Mountain, Northeast China. Chinese Journal of Applied Eco-logy, 2019, 30(5): 1513-1520] [6] 韩金生, 赵慧颖, 朱良军, 等. 小兴安岭蒙古栎和黄菠萝径向生长对气候变化的响应比较. 应用生态学报, 2019, 30(7): 2218-2230 [Han J-S, Zhao H-Y, Zhu L-J, et al. Comparing the responses of radial growth between Quercus mongolica and Phellodendron amurense to climate change in Xiaoxing'an Mountains, China. Chinese Journal of Applied Ecology, 2019, 30(7): 2218-2230] [7] 殷晓洁, 周广胜, 隋兴华, 等. 蒙古栎地理分布的主导气候因子及其阈值. 生态学报, 2013, 33(1): 103-109 [Yin X-J, Zhou G-S, Sui X-H, et al. Dominant climatic factors of Quercus mongolica geographical distribution and their thresholds. Acta Ecologica Sinica, 2013, 33(1): 103-109] [8] 刘敏, 毛子军, 厉悦, 等. 不同径级红松径向生长对气候变化的响应. 应用生态学报, 2018, 29(11): 3530-3540 [Liu M, Mao Z-J, Li Y, et al. Response of radial growth to climate change in Pinus koraiensis with different diameter classes. Chinese Journal of Applied Ecology, 2018, 29(11): 3530-3540] [9] 周晓峰, 张远东, 孙慧珍, 等. 气候变化对大兴安岭北部蒙古栎种群动态的影响. 生态学报, 2002, 22(7): 1035-1040 [Zhou X-F, Zhang Y-D, Sun H-Z, et al. The effect on climate change on population dynamics of Quercus mongolica in North Greater Xing'an Mountain. Acta Ecologica Sinica, 2002, 22(7): 1035-1040] [10] 延晓东, 赵士洞, 于振良. 中国东北森林生长演替模拟模型及其在全球变化研究中的应用. 植物生态学报, 2000, 24(1): 1-8 [Yan X-D, Zhao S-D, Yu Z-L. Modeling growth and succession of Northeastern China forests and its applications in global change studies. Chinese Journal of Plant Ecology, 2000, 24(1): 1-8] [11] 童书振, 盛炜彤, 张建国. 杉木林分密度效应研究. 林业科学研究, 2002, 15(1): 66-75 [Tong S-Z, Sheng W-T, Zhang J-G. Studies on the density effects of Chinese fir stands. Forest Research, 2002, 15(1): 66-75] [12] 李荣, 张文辉, 何景峰, 等. 不同间伐强度对辽东栎林群落稳定性的影响. 应用生态学报, 2011, 22(1): 14-20 [Li R, Zhang W-H, He J-F, et al. Effects of thinning intensity on community stability of Quercus liaotungensis forest on Loess Plateau. Chinese Journal of Applied Ecology, 2011, 22(1): 14-20] [13] 马履一, 李春义, 王希群, 等. 不同强度间伐对北京山区油松生长及其林下植物多样性的影响. 林业科学, 2007, 43(5): 1-9 [Ma L-Y, Li C-Y, Wang X-Q, et al. Effects of thinning on the growth and the diversity of undergrowth of Pinus tabuliformis plantation in Beijing mountainous areas. Scientia Silvae Sinicae, 2007, 43(5): 1-9] [14] Makinen H, Isomaki A. Thinning intensity and long-term changes in increment and stem form of Scots pine trees. Forest Ecology and Management, 2004, 203: 21-34 [15] 官秀玲, 胡艳波. 我国栎类经营及其发展方向研究. 西部林业科学, 2019, 48(2): 146-150 [Guan X-L, Hu Y-B. Research on oak forest management orientation of China. Journal of West China Forestry Science, 2019, 48(2): 146-150] [16] 尤文忠, 赵刚, 张慧东, 等. 抚育间伐对蒙古栎次生林生长的影响. 生态学报, 2015, 35(1): 56-64 [You W-Z, Zhao G, Zhang H-D, et al. Effects of thinning on growth of Mongolian oak (Quercus mongo-lica) secondary forests. Acta Ecologica Sinica, 2015, 35(1): 56-64] [17] 李文英, 顾万春. 蒙古栎天然群体表型多样性研究. 林业科学, 2005, 41(1): 49-56 [Li W-Y, Gu W-C. Study on phenotypic diversity of natural population in Quercus mongolica. Scientia Silvae Sinicae, 2005, 41(1): 49-56] [18] 许中旗, 黄选瑞, 徐成立, 等. 光照条件对蒙古栎幼苗生长及形态特征的影响. 生态学报,2009, 29(3): 1121-1128 [Xu Z-Q, Huang X-R, Xu C-L, et al. The impacts of light conditions on the growth and morphology of Quercus mongolica seedlings. Acta Ecologica Sinica, 2009, 29(3): 1121-1128] [19] Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 1983, 43: 69-78 [20] Lorimer CG, Frelich LE. A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Canadian Journal of Forest Research, 1989, 19: 651-663 [21] Nowacki GJ, Abrams MD. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecological Monographs, 1997, 67: 225-249 [22] 董希斌. 采伐强度对落叶松林生长量的影响. 东北林业大学学报, 2001, 29(1): 44-47 [Dong X-B. The impacts of cutting intensity on the growth of larch forest. Journal of Northeast Forestry University, 2001, 29(1): 44-47] [23] 秦建华, Titus SJ, Huang SM. 林分生长与产量模型系统研究综述. 林业科学, 2002, 38(1): 122-129 [Qin J-H, Titus SJ, Huang SM. The study synthesis of stand growth and yield model systems. Scientia Silvae Sinicae, 2002, 38(1): 122-129] [24] 蒋子涵, 金光泽. 择伐对阔叶红松林主要树种径向与纵向生长的影响. 生态学报, 2010, 30(21): 5843-5852 [Jiang Z-H, Jin G-Z. Effects of selection cutting on diameter growth and vertical growth among major tree species in the mixed broadleaved-Korean pine forest. Acta Ecologica Sinica, 2010, 30(21): 5843-5852] [25] Spiecker H. Tree rings and forest management in Europe. Dendrochronologia, 2002, 20: 191-202 [26] 冯琦雅, 陈超凡, 覃林, 等. 不同经营模式对蒙古栎天然次生林林分结构和植物多样性的影响. 林业科学, 2018, 54(1): 12-21 [Feng Q-Y, Chen C-F, Qin L, et al. Effects of different management models on stand structure and plant diversity of natural secondary forests of Quercus mongolica. Scientia Silvae Sinicae, 2018, 54(1): 12-21] [27] 惠刚盈, Gadow KV, 赵中华, 等. 结构化森林经营原理. 北京: 中国林业出版社, 2016 [Hui G-Y, Gadow KV, Zhao Z-H, et al. Principles of Structure-based Forest Management. Beijing: China Forestry Press, 2016] [28] 李腾, 何兴元, 陈振举. 东北南部蒙古栎径向生长对气候变化的响应——以千山为例. 应用生态学报, 2014, 25(7): 1841-1848 [Li T, He X-Y, Chen Z-J. Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern Northeast: A case study in Qianshan Mountains. Chinese Journal of Applied Ecology, 2014, 25(7): 1841-1848] [29] Vose JM, Miniat CF, Luce CH, et al. Ecohydrological implications of drought for forests in the United States. Forest Ecology and Management, 2016, 380: 335-345 [30] 李广起, 白帆, 桑卫国. 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应. 植物生态学报, 2011, 35(5): 500-511 [Li G-Q, Bai F, Sang W-G. Different responses of radial growth to climate warming in Pinus koraiensis and Picea jezoensis var. komarovii at their upper elevational limits in Changbai Mountain, China. Chinese Journal of Plant Ecology, 2011, 35(5): 500-511] [31] 蔡礼蓉, 匡旭, 房帅, 等. 长白山阔叶红松林3个常见树种径向生长的影响因素. 应用生态学报, 2017, 28(5): 1407-1413 [Cai L-R, Kuang X, Fang S, et al. Factors influencing tree radial growth of three common species in broad-leaved Korean pine mixed forests in Changbai Mountains, China. Chinese Journal of Applied Ecology, 2017, 28(5): 1407-1413] |