[1] Díez-Pascual AM. Carbon-based nanomaterials. International Journal of Molecular Sciences, 2021, 22: 7726 [2] Dreyer DR, Park S, Bielawski CW, et al. The chemistry of graphene oxide. Chemical Society Reviews, 2010, 39: 228-240 [3] Liu LJ, Weng YN, Fang J, et al. Understanding the effect of GO on nitrogen assimilation in wheat through transcriptomics and metabolic process analysis. Chemosphere, 2022, 296: 134000 [4] 王晓静, 赵树兰, 多立安. 氧化石墨烯拌种对高羊茅种子萌发与幼苗生长的影响. 种子, 2018, 37(4): 1-4, 10 [5] 朱先贵, 赵树兰, 多立安. 氧化石墨烯对紫花苜蓿幼苗生理生态特征的影响. 天津师范大学学报: 自然科学版, 2020, 40(3): 33-37 [6] Park S, Choi KS, Kim S, et al. Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials, 2020, 10: 758 [7] Zhang M, Gao B, Chen JJ, et al. Effects of graphene on seed germination and seedling growth. Journal of Nano-particle Research, 2015, 17: 78 [8] Vochita G, Oprica L, Gherghel D, et al. Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings. Ecotoxicology and Environmental Safety, 2019, 181: 345-352 [9] Chen JZ, Mu QL, Tian XH. Phytotoxicity of graphene oxide on rice plants is concentration-dependent. Mate-rials Express, 2019, 9: 635-640 [10] 刘扬扬, 洪莹, 丁梦嘉, 等. 氧化石墨烯对高羊茅光合固碳特征的影响. 天津师范大学学报: 自然科学版, 2023, 43(2): 41-47 [11] Gao ML, Xu YL, Chang XP, et al. Effects of foliar application of graphene oxide on cadmium uptake by lettuce. Journal of Hazardous Materials, 2020, 398: 122859 [12] Gao ML, Chang XP, Yang YJ, et al. Foliar graphene oxide treatment increases photosynthetic capacity and reduces oxidative stress in cadmium-stressed lettuce. Plant Physiology and Biochemistry, 2020, 154: 287-294 [13] Xiao XL, Wang XP, Liu LX, et al. Effects of three graphene-based materials on the growth and photosynthesis of Brassica napus L. Ecotoxicology and Environmental Safety, 2022, 234: 113383 [14] 郑虹君, 朱叙丞, 李耀基, 等. 白芸豆功能成分、生物活性及其产品开发研究进展. 中国粮油学报, 2022, 37(12): 277-285 [15] 周超, 周传余, 徐婷, 等. 腐植酸液体叶面肥对大棚茄子产量与品质的影响. 安徽农学通报, 2014, 20(增刊2): 57-58 [16] 董丽丽, 邢翠娟, 祁瑞芳, 等. 氧化石墨烯制备条件及其对其性状的影响. 山东化工, 2018, 47(7): 13-15 [17] Lichtenthaler HK. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 1987, 148: 350-382 [18] Huber SC, Israel DW. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max Merr.) leaves. Plant Physiology, 1982, 69: 691-696 [19] 汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999 [20] 池敏青, 黄小凤, 谢和霞, 等. 木薯叶片可溶性糖含量与块根淀粉积累的关系. 中国农学通报, 2006, 22(8): 289-291 [21] 王学奎. 植物生理生化实验原理和技术. 第2版. 北京: 高等教育出版社, 2006 [22] 孔祥生. 植物生理学实验技术. 北京: 科学出版社, 2008 [23] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000 [24] 高存斌, 张冠琳, 刘玉真. 氧化石墨烯暴露对水稻和小麦发芽及幼苗生长的影响. 土壤科学, 2019, 7(4): 251-261 [25] Guo XH, Zhao JG, Wang RM, et al. Effects of graphene oxide on tomato growth in different stages. Plant Physiology and Biochemistry, 2021, 162: 447-455 [26] 王晶, 伏兵哲, 李淑霞, 等. 外源褪黑素对干旱胁迫下沙芦草幼苗生长和生理特性的影响. 应用生态学报, 2023, 34(11): 2947-2957 [27] Siddiqui ZA, Parveen A, Ahmad L, et al. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae, 2019, 249: 374-382 [28] Hu YM, Zhang P, Zhang X, et al. Multi-wall carbon nanotubes promote the growth of maize (Zea mays) by regulating carbon and nitrogen metabolism in leaves. Journal of Agricultural and Food Chemistry, 2021, 69: 4981-4991 [29] Dasmahapatra AK, Tchounwou PB. Histopathological evaluation of the interrenal gland (adrenal homolog) of Japanese medaka (Oryzias latipes) exposed to graphene oxide. Environmental Toxicology, 2022, 37: 2460-2482 [30] 姜东, 于振文, 李永庚, 等. 施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响. 中国农业科学, 2002, 35(2): 157-162 [31] 张智猛, 万书波, 宁堂原, 等. 不同花生品种氮代谢相关酶活性的研究. 植物营养与肥料学报, 2007, 13(4): 707-713 [32] Cruz C, Lips SH, Martins-Loução MA. The effect of nitrogen source on photosynthesis of carob at high CO2 concentrations. Physiologia Plantarum, 1993, 89: 552-556 [33] 邢兴华, 徐泽俊, 齐玉军, 等. 外源α-萘乙酸对花期干旱大豆碳代谢的影响. 应用生态学报, 2018, 29(4): 1215-1224 [34] Younes NA, Dawood MFA, Wardany AA. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. Chemosphere, 2019, 228: 318-327 [35] Zhao SL, Wang W, Chen XJ, et al. Graphene oxide affected root growth, anatomy, and nutrient uptake in alfalfa. Ecotoxicology and Environmental Safety, 2023, 250: 114483 [36] Cheng YY, Wang Y, Han YL, et al. The stimulatory effects of nanochitin whisker on carbon and nitrogen metabolism and on the enhancement of grain yield and crude protein of winter wheat. Molecules, 2019, 24: 1752 [37] Winkler AJ, Dominguez-Nuñez JA, Aranaz I, et al. Short-chain chitin oligomers: Promoters of plant growth. Marine Drugs, 2017, 15: 40 |