[1] 宋显伟, 张保才, 白洋, 等. 生物技术助力黑土地保护性利用的应用与思考. 中国科学院院刊, 2021, 36(12): 1488-1496 [2] 侯建国. 科技创新支撑黑土地永续利用. 中国科学院院刊, 2021, 36(10): 1123-1126 [3] 李欣欣, 许锐能, 廖红. 大豆共生固氮在农业减肥增效中的贡献及应用潜力. 大豆科学, 2016, 35(4): 531-535 [4] Miao L, Feng W, Zhang YQ, et al. Chemoheterotrophic diazotrophs contribute to nitrogen incorporation in a semi-arid desert. Biology and Fertility of Soils, 2020, 56: 1165-1176 [5] Córdova SC, Castellano MJ, Dietzel R, et al. Soybean nitrogen fixation dynamics in Iowa, USA. Field Crops Research, 2019, 236: 165-176 [6] 管凤贞, 邱宏端, 陈济琛, 等. 根瘤菌菌剂的研究与开发现状. 生态学杂志, 2012, 31(3): 755-759 [7] 田艺心, 高凤菊, 曹鹏鹏, 等. 减氮接种根瘤菌剂对黄淮海地区高蛋白夏大豆生长发育、产量和经济效益的影响. 河北农业科学, 2022, 26(6): 72-77, 82 [8] Alves BJR, Boddey RM, Urquiaga S. The success of BNF in soybean in Brazil. Plant and Soil, 2003, 252: 1-9 [9] 伍惠. 优良大豆根瘤菌株的分离、鉴定及应用研究. 硕士论文. 武汉: 华中农业大学, 2017 [10] Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 2008, 311: 1-18 [11] 孙磊, 郝佩佩, 王吴彬, 等. 我国大豆产能现状分析与提升路径探讨. 寒旱农业科学, 2023, 2(10): 889-894 [12] Yu J, Zhou XF, Yang SJ, et al. Design and application of specific 16S rDNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR-DGGE. Applied Microbiology and Biotechnology, 2013, 97: 9825-9836 [13] Sarita S, Sharma PK, Priefer UB, et al. Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiology Ecology, 2005, 54: 1-11 [14] Laguerre G, Nour SM, Macheret V, et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology, 2001, 147: 981-993 [15] Patra AK, Abbadie L, Clays-Josserand A, et al. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environmental Microbiology, 2006, 8: 1005-1016 [16] Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution, 1992, 9: 678-687 [17] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2015, 33: 1870-1874 [18] 张楠, 苗淑杰, 乔云发, 等. 东北农田黑土N2O排放研究进展. 土壤学报, 2022, 26(6): 899-909 [19] 王寅, 李晓宇, 王缘怡, 等. 东北黑土区农业绿色发展现状与优化策略. 吉林农业大学学报, 2022, 44(6): 647-656 [20] Zilli JÉ, Pacheco RS, Gianluppi V, et al. Biological N2 fixation and yield performance of soybean inoculated with Bradyrhizobium. Nutrient Cycling in Agroecosystems, 2021, 119: 323-336 [21] Tian CF, Zhou YJ, Zhang YM, et al. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 8629-8634 [22] Zhang XX, Guo HJ, Jiao J, et al. Pyrosequencing of rpoB uncovers a significant biogeographical pattern of rhizobial species in soybean rhizosphere. Journal of Biogeography, 2016, 44: 1491-1499 [23] Wang JY, Wang R, Zhang YM, et al. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 616-624 [24] 伍惠, 钟喆栋, 王学路, 等. 与黑龙江大豆主栽品种匹配的优良根瘤菌筛选与鉴定. 应用与环境生物学报, 2018, 24(1): 39-46 [25] 李昕芫, 娄金秀, 刘清源, 等. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究. 中国农业科学, 2021, 54(16): 3393-3405 [26] Liu ZX, Gu HD, Liang AZ, et al. Conservation tillage regulates the assembly, network structure and ecological function of the soil bacterial community in black soils. Plant and Soil, 2022, 472: 207-223 [27] Wang XL, Cui WJ, Feng XY, et al. Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: A strong selection of facultative microsymbionts. Soil Biology and Biochemistry, 2018, 116: 340-350 [28] Mburu SW, Koskey G, Njeru EM, et al. Differential response of promiscuous soybean to local diversity of indi-genous and commercial Bradyrhizobium inoculation under contrasting agroclimatic zones. International Journal of Plant Production, 2020, 14: 571-582 [29] 朱佳豪, 焦健, 蒲怡, 等. 固氮根瘤菌与海南主栽菜用大豆的共生匹配性和促生效应. 大豆科学, 2023, 42(4): 441-450 [30] 王鹏辉, 姜昕, 马鸣超, 等. 一株耐干燥大豆根瘤菌菌株的筛选与固氮效果评价. 大豆科学, 2020, 39(1): 90-96 [31] Namozov F, Islamov S, Atabaev M, et al. Agronomic performance of soybean with Bradyrhizobium inoculation in double-cropped farming. Agriculture, 2022, 12: 855 [32] 康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌作用机制研究进展. 应用生态学报, 2010, 21(1): 232-238 [33] 周益帆, 白寅霜, 岳童, 等. 植物根际促生菌促生特性研究进展. 微生物学通报, 2023, 50(2): 644-666 [34] Xing PF, Zhao YB, Guan DW, et al. Effects of Bradyrhizobium co-inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community. Genes, 2022, 13: 1922 [35] Zhao YB, Guan DW, Liu X, et al. Profound change in soil microbial assembly process and co-occurrence pattern in co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 on soybean. Frontiers in Microbiology, 2022, 13: 846359 [36] 陈腊, 米国华, 李可可, 等. 多功能植物根际促生菌对东北黑土区玉米的促生效果. 应用生态学报, 2020, 31(8): 2759-2766 [37] 渠露露, 彭长连, 李淑彬. 一株溶植酸磷类芽孢杆菌的分离筛选及对水稻幼苗的促生作用. 应用生态学报, 2020, 31(1): 326-332 [38] 朱浩, 刘珂欣, 刘维维, 等. 极端耐盐碱菌株的筛选及其菌肥对盐碱条件下小麦生长和土壤环境的影响. 应用生态学报, 2019, 30(7): 2338-2344 [39] Prakamhang J, Tittabutr P, Boonkerd N, et al. Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Applied Soil Ecology, 2015, 85: 38-49 [40] Kasana RC, Mohanram S, Naorem A, et al. Characte-rization and utilization of multi-trait plant growth promoting rhizobacteria from arid soils of western Rajasthan for enhancing drought resilience in an arid legume. Arid Land Research and Management, 2024, 38: 226-245 [41] Goncalves OS, Souza TS, Goncalves GC, et al. Harnessing novel soil bacteria for beneficial interactions with soybean. Microorganisms, 2023, 11: 300 [42] Zhao J, Liu D, Wang YY, et al. Biocontrol potential of Microbacterium maritypicum Sneb159 against Heterodera glycines. Pest Management Science, 2019, 75: 3381-3391 |