欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2024, Vol. 35 ›› Issue (7): 1951-1958.doi: 10.13287/j.1001-9332.202407.020

• • 上一篇    下一篇

基于无人机影像的鼠害地秃斑识别算法筛选

蔡斌1,2, 董瑞1,2, 花蕊3, 刘济泽1, 王磊1, 郝媛媛1, 杨思维2, 花立民1*   

  1. 1甘肃农业大学草业学院/草业生态系统教育部重点实验室/国家林业草原高寒草地鼠害防控工程技术研究中心, 兰州 730070;
    2四川省草原科学研究院/青藏高原高寒草地生态修复工程技术研究中心/色达草地生态四川省野外科学观测研究站, 成都 611730;
    3中国农业科学院草原研究所, 呼和浩特 010010
  • 收稿日期:2024-01-16 修回日期:2024-05-14 出版日期:2024-07-18 发布日期:2025-01-18
  • 通讯作者: *E-mail: hualm@gsau.edu.cn
  • 作者简介:蔡 斌, 男, 1998年生, 硕士研究生。主要从事草地遥感信息科技应用研究。E-mail: caibin220932@gmail.com
  • 基金资助:
    高校科研创新平台重大培育项目(2024CXPT-07)、四川省自然科学基金面上项目(2023NSFSC0207)和甘肃省教育厅产业支撑计划项目(2021CYZC-05)

Screening of identification algorithm for rodent-induced bare patches based on the drone imagery

CAI Bin1,2, DONG Rui1,2, HUA Rui3, LIU Jize1, WANG Lei1, HAO Yuanyuan1, YANG Siwei2, HUA Limin1*   

  1. 1College of Pratacultural Science, Gansu Agricultural Universit/Key Laboratory of Grassland Ecosystems of the Mini-stry of Education/Engineering and Technology Research Center for Alpine Rodent Pest Control, National Forestry and Grassland Administration, Lanzhou 730070, China;
    2Sichuan Academy of Grassland Science/Qinghai-Tibet Plateau Alpine Grassland Ecology Restoration Engineering Technology Research Center/Seda Grassland Ecology Sichuan Field Scientific Observation and Research Station, Chengdu 611730, China;
    3Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
  • Received:2024-01-16 Revised:2024-05-14 Online:2024-07-18 Published:2025-01-18

摘要: 鼠害型秃斑是反映草地鼠害的重要表征。利用无人机遥感技术识别高原鼠兔危害型秃斑对于评价其危害情况具有重要意义。本研究基于无人机可见光影像,使用最小距离(MinD)、最大似然(ML)、支持向量机(SVM)、马氏距离(MD)和神经网络(NN)5种监督分类算法对高原鼠兔危害地特征进行分类识别,并采用混淆矩阵对5种分类方法精度进行评价。结果表明: 相较于其他3种方法,NN和SVM对高原鼠兔危害地特征进行识别分类的效果更好。其中,NN对草地与秃斑2种目标地物的制图精度分别为98.1%和98.5%,用户精度分别为98.8%和97.7%,模型总体精度为98.3%,Kappa系数为0.97,像元错分、漏分现象较低。经实践验证,NN表现出较好的稳定性。综上,神经网络方法是高寒草甸鼠害型秃斑识别的优选方法。

关键词: 高寒草甸, 鼠害地, 无人机, 监督分类, 神经网络

Abstract: Rodent-infested bald spots are crucial indicators of rodent infestation in grasslands. Leveraging Unmanned Aerial Vehicle (UAV) remote sensing technology for discerning detrimental bald spots among plateau pikas has significant implications for assessing associated ecological hazards. Based on UAV-visible light imagery, we classified and recognized the characteristics of plateau pika habitats with five supervised classification algorithms, i.e., minimum distance classification (MinD), maximum likelihood classification (ML), support vector machine classification (SVM), Mahalanobis distance classification (MD), and neural network classification (NN) . The accuracy of the five methods was evaluated using a confusion matrix. Results showed that NN and SVM exhibited superior performance than other methods in identifying and classifying features indicative of plateau pika habitats. The mapping accuracy of NN for grassland and bald spots was 98.1% and 98.5%, respectively, with corresponding user accuracy was 98.8% and 97.7%. The overall model accuracy was 98.3%, with a Kappa coefficient of 0.97, reflecting minimal misclassification and omission errors. Through practical verification, NN exhibited good stability. In conclusion, the neural network method was suitable for identifying rodent-damaged bald spots within alpine meadows.

Key words: alpine meadow, rodent-infested land, unmanned aerial vehicle, supervised classification, neural network