[1] 何拓, 焦立超, 郭娟, 等. 木材信息学: 发展、应用与展望. 木材科学与技术, 2021, 35(4): 15-24 [2] 方克艳, 陈秋艳, 刘昶智, 等. 树木年代学的研究进展. 应用生态学报, 2014, 25(7): 1879-1888 [3] 李俊霞, 马鑫博, 付永平, 等. 沈阳清墓木质葬具的树种鉴定及生态环境的指示潜力. 应用生态学报, 2021, 32(10): 3687-3698 [4] Jin YT, Li JX, Bai XP, et al. High temperatures constrain latewood formation in Larix gmelinii xylem in boreal forests. Global Ecology and Conservation, 2021, 30: e01767 [5] 赵莹, 蔡立新, 靳雨婷, 等. 暖干化加剧东北半干旱地区油松人工林径向生长的水分限制. 应用生态学报, 2021, 32(10): 3459-3467 [6] Homan D, Preez JA. Automated feature-specific tree species identification from natural images using deep semi-supervised learning. Ecological Informatics, 2021, 66: 101475 [7] Fabijańska A, Danek M, Barniak J. Wood species automatic identification from wood core images with a resi-dual convolutional neural network. Computers and Electronics in Agriculture, 2021, 181: 105941 [8] Ravindran P, Costa A, Soares R, et al. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods, 2018, 14: 25 [9] Lens F, Liang C, Guo YH, et al. Computer-assisted timber identification based on features extracted from microscopic wood sections. IAWA Journal, 2020, 41: 660-680 [10] 张怡卓, 马琳, 王铁滨, 等. 小波变换的木材纹理在线分选. 林业科技, 2012, 37(6): 21-24 [11] Filho P, Oliveira LS, Nisgoski S, et al. Forest species recognition using macroscopic images. Machine Vision and Applications, 2014, 25: 1019-1031 [12] Kobayashi K, Hwang SW, Lee WH, et al. Texture ana-lysis of stereograms of diffuse-porous hardwood: Identification of wood species used in Tripitaka Koreana. Journal of Wood Science, 2017, 63: 322-330 [13] Peng Z. Robust wood species recognition using variable color information. Optik, 2013, 124: 2833-2836 [14] Zamri MIP, Cordova F, Khairuddin ASM, et al. Tree species classification based on image analysis using Improved-Basic Gray Level Aura Matrix. Computers and Electonics in Agriculture, 2016, 124: 227-233 [15] Yusof R, Rosli NR. Tropical wood species recognition system based on Gabor filter as image multiplier. 9th International Conference on Signal-Image Technology and Internet-Based Systems, Kyoto, 2013: 737-743 [16] Barmpoutis P, Dimitropoulos K, Barboutis I, et al. Wood species recognition through multidimensional texture analysis. Computers and Electronics in Agriculture, 2018, 144: 241-248 [17] Geus A, Backes AR, Gontijo AB, et al. Amazon wood species classification: A comparison between deep lear-ning and pre-designed features. Wood Science and Technology, 2021, 55: 857-872 [18] Wu FY, Gazo R, Haviarova E, et al. Wood identification based on longitudinal section images by using deep learning. Wood Science and Technology, 2021, 55: 553-563 [19] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86: 2278-2324 [20] Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 1-9 [21] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60: 84-90 [22] Karpathy A, Toderici G, Shetty, et al. Large-scale video classification with convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 1725-1732 [23] Hinton GE, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors. Computer Science, 2012, 3: 212-223 [24] Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines Vinod Nair. Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807-814 [25] Passalis N, Tefas A. Learning bag-of-features pooling for deep convolutional neural networks. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5766-5774 [26] Kingma DP, Ba J. A method for stochastic optimization. Proceddings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 2015: 1-15 [27] Smith LN, Topin N. Super-convergence: Very fast trai-ning of neural networks using large learning rates. Conference on Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Baltimore, MD, USA, 2019: UNSP1100612 [28] 杨家驹, 程放, 杨建华, 等. 木材识别: 主要乔木树种. 北京: 中国建材工业出版社, 2009: 188-193 [29] 刘一星, 赵广杰. 木质资源材料学. 北京: 中国林业出版社, 2004: 65-72 [30] 徐有明. 木材学. 第2版. 北京: 中国林业出版社, 2019: 76-82 [31] Elmas B. Identifying species of trees through bark images by convolutional neural networks with transfer lear-ning method. Journal of the Faculty of Engineering and Architecture of Gazi University, 2021, 36: 1254-1269 [32] Vizcarra G, Bermejo D, Mauricio A, et al. The Peru-vian Amazon forestry dataset: A leaf image classification corpus. Ecological Informatics, 2021, 62: 101268 [33] Minowa Y, Kubota Y. Identification of broad-leaf trees using deep learning based on field photographs of multiple leaves. Journal of Forest Research, 2022, 27: 246-254 [34] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. IEEE Confe-rence on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2016: 2818-2826 [35] 何拓, 刘守佳, 陆杨, 等. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统. 林业科学, 2021, 57(9): 152-159 [36] Figueroa-Mata G, Mata-Montero E, Valverde-Otarola JC, et al. Using deep learning to identify Costa Rican native tree species from wood cut images. Frontiers in Plant Science, 2022, 13: 789227 [37] 殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异. 应用生态学报, 2018, 29(2): 352-360 [38] Gasson P. How precise can wood identification be? Wood anatomy's role in support of the legal timber trade, especially cites. IAWA Journal, 2011, 32: 137-154 [39] da Silva NR, de Ridder M, Baetens JM, et al. Automated classification of wood transverse cross-section micro-imagery from 77 commercial Central-African timber species. Annals of Forest Science, 2017, 74: 30 [40] Wheeler EA, Baas P. Wood identification: A review. IAWA Journal, 1998, 19: 241-264 |