[1] 王淑春, 程然然, 杜盛. 黄土丘陵区2种典型林分降雨分配特征及其主要影响因素. 水土保持学报, 2022, 36(3):173-180 [2] 张捷, 刘洋, 张健, 等. 马尾松人工林林冠层降雨再分配及其氮磷特征. 生态学杂志, 2014, 33(6): 1451-1458 [3] Zhang YF, Wang XP, Hu R, et al. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems. Journal of Hydrology, 2016, 539: 406-416 [4] Sun JM, Yu XX, Wang HN, et al. Effects of forest structure on hydrological processes in China. Journal of Hydrology, 2018, 561: 187-199 [5] 王新平, 康尔泗, 张景光, 等.荒漠地区主要固沙灌木的降水截留特征. 冰川冻土, 2004, 26(1): 89-94 [6] 郭建平. 植物对降水截留的研究进展. 应用气象学报, 2020, 31(6): 641-652 [7] 雷丽群, 郑路, 农友, 等. 降雨特征对红锥人工林降水分配格局的影响. 生态学杂志, 2020, 39(2): 460-468 [8] Staelens J, De Schrijver A, Verheyen K, et al. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorology. Hydrological Processes, 2008, 22: 33-45 [9] Van Stan JT, Van Stan JH, Levia DF. Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species. International Journal of Biometeorology, 2014, 58: 2059-2069 [10] Siegert CM, Levia DF. Seasonal and meteorological effects on differential stemflow funneling ratios for two deciduous tree species. Journal of Hydrology, 2014, 519: 446-454 [11] Muzylo A, Llorens P, Domingo F. Rainfall partitioning in a deciduous forest plot in leafed and leafless periods. Ecohydrology, 2012, 5: 759-767 [12] 李亦然, 张荣华, 李泽东, 等. 基于Gash修正模型的元宝槭林分结构对降雨分配的影响. 山东大学学报:理学版, 2019, 54(1): 26-35 [13] 孙忠林, 王传宽, 王兴昌, 等. 两种温带落叶阔叶林降雨再分配格局及其影响因子. 生态学报, 2014, 34(14): 3978-3986 [14] Fathizadeh O, Hosseini SM, Zimmermann A, et al. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Science of the Total Environment, 2017, 601-602: 1824-1837 [15] Zhang YF, Yuan C, Chen N, et al. Rainfall partitioning by vegetation in China: A quantitative synthesis. Journal of Hydrology, 2023, 617: 128946 [16] Holder CD. Effects of leaf hydrophobicity and water droplet retention on canopy storage capacity. Ecohydrology, 2013, 6: 483-490 [17] Anna I, Jarosław K. Hydrological properties of bark of selected forest tree species. Part I: The coefficient of development of the interception surface of bark. Trees, 2014, 28: 831-839 [18] Iida SI, Levia DF, Shimizu A, et al. Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand. Journal of Hydrology, 2017, 548: 770-783 [19] 李成, 李兆哲, 王让会, 等.基于增强回归树的麦-玉轮作农田蒸散影响因素分析. 农业机械学报, 2023, 54(1): 317-325 [20] Aertsen W, Kint V, Orshoven JV, et al. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 2010, 221: 1119-1130 [21] Tanaka N, Levia D, Igarashi Y, et al. Throughfall under a Teak plantation in Thailand: A multifactorial analysis on the effects of canopy phenology and meteorological conditions. International Journal of Biometeorology, 2015, 59: 1145-1156 [22] Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. Journal of Animal Ecology, 2008, 77: 802-813 [23] Zhang YF, Wang XP, Pan YX, et al. Global quantitative synthesis of effects of biotic and abiotic factors on stemflow production in woody ecosystems. Global Ecology and Biogeography, 2021, 30: 1713-1723 [24] Feng TJ, Wei TX, Saskia DK, et al. Long-term effects of vegetation restoration on hydrological regulation functions and the implications to afforestation on the Loess Plateau. Agricultural and Forest Meteorology, 2023, 330: 109313 [25] 董玲玲, 康峰峰, 韩海荣, 等. 辽河源3种林分降雨再分配特征及其影响因素. 水土保持学报, 2018, 32(4): 145-150 [26] Ma CK, Yao Q, Meng HB, et al. Rainfall partitioning by evergreen and deciduous broad-leaved xerophytic tree species: Influence of rainfall, canopy characteristics, and meteorology. Water, 2022, 14: 3723 [27] 李紫晴, 王金满, 时文婷, 等. 排土场典型树种穿透雨空间分布特征. 水土保持学报, 2022, 36(6): 271-279 [28] 程然然. 黄土丘陵区两典型天然林和人工林生态水文过程研究. 博士论文. 杨凌: 中国科学院教育部水土保持与生态环境研究中心, 2020 [29] Yang XL, Shao MA, Wei XR. Stemflow production differ significantly among tree and shrub species on the Chinese Loess Plateau. Journal of Hydrology, 2019, 568: 427-436 [30] 高柳威. 北京山区不同树种的林冠截留特征研究及模拟. 硕士论文. 北京: 北京林业大学, 2019 [31] Jian SQ, Zhao CY, Fang SM, et al. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agricultural and Forest Meteorology, 2015, 206: 85-96 [32] 黄团冲, 贺康宁, 王先棒. 青海大通白桦林冠层降雨再分配与冠层结构关系研究. 西北林学院学报, 2018, 33(3): 1-6 [33] 张钊. 华北典型人工油松林冠层与大气水文化学相互作用过程机制研究. 硕士论文. 天津: 天津大学, 2020 [34] Su L, Xu WT, Zhao CM, et al. Inter- and intra-specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest. Journal of Hydrology, 2016, 537: 1-9 [35] Campbell GS, Norman JM. An Introduction to Environmental Biophysics. New York: Springer, 1977 [36] Qian YK, Shi CQ, Zhao TN, et al. Canopy interception of different rainfall patterns in the rocky mountain areas of Northern China: An application of the revised Gash model. Forests, 2022, 13: 1666 [37] Death G. Boosted trees for ecological modeling and prediction. Ecology, 2007, 88: 243-251 [38] Nash JE, Sutcliffe JV. River flow forecasting through conceptual models part I: A discussion of principles. Journal of Hydrology, 1970, 10: 282-290 [39] Yuan C, Gao GY, Fu BJ. Stemflow of a xerophytic shrub (Salix psammophila) in northern China: Implication for beneficial branch architecture to produce stemflow. Journal of Hydrology, 2016, 539: 577-588 [40] Zhang YF, Wang XP, Hu R, et al. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, Northwestern China. Journal of Hydrology, 2015, 527: 1084-1095 [41] Magliano PN, Whitworth-hulse JI, Baldi G. Interception, throughfall and stemflow partition in drylands: Global synthesis and meta-analysis. Journal of Hydrology, 2019, 568: 638-645 [42] Zheng J, Fan JL, Zhang FC, et al. Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China. Agricultural Water Management, 2018, 195: 25-36 [43] Ma CK, Li XD, Luo Y, et al. The modelling of rainfall interception in growing and dormant seasons for a Pine plantation and a black locust plantation in semi-arid northwest China. Journal of Hydrology, 2019, 577: 123849 [44] 王伟杰, 王秋月, 易军, 等. 三峡山地不同林型冠层截留特征及再分配过程研究. 华中师范大学学报:自然科学版, 2022, 56(3): 541-550 [45] Ahmadi MT, Attarod P, Mohadjer MRM, et al. Partitioning rainfall into throughfall, stemflow, and interception loss in an oriental beech (Fagus orientalis Lipsky) forest during the growing season. Turkish Journal of Agriculture and Forestry, 2009, 33: 557-568 [46] Limin SG, Oue H, Sato Y, et al. Partitioning rainfall into throughfall, stemflow, and interception loss in clove (Syzygium aromaticum) plantation in upstream Saba River Basin, Bali. Procedia Environmental Sciences, 2015, 28: 280-285 [47] Su L, Qi LY, Zhuang WL, et al. Contrasting effects of low-severity fire on stemflow production between coexisting Pine and Oak trees. Science of the Total Environment, 2023, 858: 159885 [48] Levia DF, Germer S. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Reviews of Geophysics, 2015, 53: 673-714 [49] Zhang YF, Wang XP, Hu R, et al. Stemflow volume per unit rainfall as a good variable to determine the relationship between stemflow amount and morphological metrics of shrubs. Journal of Arid Environments, 2017, 141: 1-6 [50] Honda EA, Mendonça AH, Durigan G. Factors affecting the stemflow of trees in the Brazilian Cerrado. Ecohydro-logy, 2015, 8: 1351-1362 [51] Yue K, Frenne PD, Fornara DA, et al. Global patterns and drivers of rainfall partitioning by trees and shrubs. Global Change Biology, 2021, 27: 3350-3357 [52] Návar J. Stemflow variation in Mexico’s northeastern forest communities: Its contribution to soil moisture content and aquifer recharge. Journal of Hydrology, 2011, 408: 35-42 [53] 张继辉, 郑路, 陈琳, 等. 降雨特征对南亚热带马尾松人工林降水分配格局的影响. 水土保持学报, 2021, 35(1): 174-180 [54] 任世奇, 项东云, 肖文发, 等. 广西南宁桉树人工林降雨再分配特征. 生态学杂志, 2017, 36(6): 1473-1480 [55] 于立忠, 王利, 刘利芳, 等. 浑河上游典型水源涵养林降雨再分配过程. 水土保持学报, 2016, 30(6): 106-110 [56] Nanko K, Keim RF, Hudson SA, et al. Throughfall drop sizes suggest canopy flowpaths vary by phenophase. Journal of Hydrology, 2022, 612: 128144 [57] Tanaka N, Levia D, Igarashi Y, et al. Throughfall under a teak plantation in Thailand: A multifactorial analysis on the effects of canopy phenology and meteorological conditions. International Journal of Biometeorology, 2015, 59: 1145-1156 [58] Sadeghi SMM, Panahandeh T, Van Stan Ⅱ JT, et al. Responses of canopy hydrometorological parameters to oak dieback in the Mediterranean sparse forest, Iran. Agricultural and Forest Meteorology, 2023, 343: 109784 [59] Yang XG, Chen L, Wang L, et al. Dynamic rainfall-partitioning relationships among throughfall, stemflow, and interception loss by Caragana intermedia. Journal of Hydrology, 2019, 574: 980-989 [60] 胡鹏, 朗明翰, 吴晗玉, 等. 兴安落叶松林降雨再分配特征. 干旱区资源与环境, 2018, 32(4): 138-143 [61] 裴承敏, 王云琦, 张守红, 等. 重庆缙云山毛竹林次降雨再分配特征及穿透雨的空间异质性. 水土保持学报, 2018, 32(5): 202-207 [62] Levia DF, Van Stan JT, Mage SM, et al. Temporal variability of stemflow volume in a Beech-Yellow Poplar forest in relation to tree species and size. Journal of Hydrology, 2010, 380: 112-120 [63] Goebes P, Seitz S, Kühn P, et al. Throughfall kinetic energy in young subtropical forests: Investigation on tree species richness effects and spatial variability. Agricultural and Forest Meteorology, 2015, 213: 148-159 [64] Alivio MB, raj M, Bezak N. Investigating the reduction of rainfall intensity beneath an urban deciduous tree canopy. Agricultural and Forest Meteorology, 2023, 342: 109727 [65] 田红灯, 申文辉, 谭一波, 等. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报, 2021, 41(5): 93-101 [66] 丁霞, 程昌锦, 漆良华, 等. 丹江口库区湖北水源区不同密度马尾松人工林水源涵养能力. 生态学杂志, 2019, 38(8): 2291-2301 [67] Magliano PN, Whitworth-hulse JI, Cid FD, et al. Global rainfall partitioning by dryland vegetation: Developing general empirical models. Journal of Hydrology, 2022, 607: 127540 [68] 杨阳, 朱元骏, 安韶山. 黄土高原生态水文过程研究进展. 生态学报, 2018, 38(11): 4052-4063 |