[1] 杨方亮, 许红娜. “十四五”煤炭行业生态环境保护与资源综合利用发展路径分析. 中国煤炭, 2021, 47(5): 73-82 [2] 胡振琪, 肖武, 赵艳玲. 再论煤矿区生态环境“边采边复”. 煤炭学报, 2020, 45(1): 351-359 [3] Li JY, Wang JM. Comprehensive utilization and environmental risks of coal gangue: A review. Journal of Cleaner Production, 2019, 239: 12-25 [4] 白中科, 周伟, 王金满, 等. 再论矿区生态系统恢复重建. 中国土地科学, 2018, 32(11): 1-9 [5] Wang LL, Wang F, Wang SF, et al. Analysis of differences in chemical properties of reconstructed soil under different proportions of topsoil substitute materials. Environmental Science and Pollution Research, 2021, 28: 31230-31245 [6] Du T, Wang DM, Bai YJ, et al. Optimizing the formulation of coal gangue planting substrate using wastes: The sustainability of coal mine ecological restoration. Ecological Engineering, 2020, 143: 1-10 [7] 赵陟峰, 王冬梅, 赵廷宁. 保水剂对煤矸石基质上高羊茅生长及营养吸收的影响. 生态学报, 2013, 33(16): 5101-5108 [8] Motesharezadeh B, Ahmadiyan E, Alikhani HA, et al. The use of coal gangue as a cultivation bed conditioner in forage maize inoculated with arbuscular mycorrhizal fungi. Communications in Soil Science and Plant Analysis, 2017, 48: 1266-1279 [9] 储昭霞. 煤矸石协同植物对铜尾矿改良的效果与作用机制研究. 博士论文. 安徽淮南: 安徽理工大学, 2020 [10] Li XL, Gao J, Zhang J, et al. Adaptive strategies to overcome challenges in vegetation restoration to coalmine wasteland in a frigid alpine setting. Catena, 2019, 182: 1-10 [11] 徐良骥, 朱小美, 刘曙光, 等. 不同粒径煤矸石温度场影响下重构土壤水分时空响应特征. 煤炭学报, 2018, 43(8): 2304-2310 [12] 徐良骥, 黄璨, 李青青, 等. 煤矸石粒径结构对充填复垦重构土壤理化性质及农作物生理生态性质的影响. 生态环境学报, 2016, 25(1): 141-148 [13] 柯凯恩, 董晓芸, 周金星, 等. 煤矸石生态基质的制备配方及其肥力特征研究. 中国土壤与肥料, 2021(4): 308-317 [14] 杨永刚, 苏帅, 焦文涛. 煤矿复垦区土壤水动力学特性对下渗过程的影响. 生态学报, 2018, 38(16): 5876-5882 [15] Amezketa E. Soil aggregate stability: A review. Journal of Sustainable Agriculture, 1999, 14: 83-151 [16] Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. Journal of Animal Ecology, 2008, 77: 802-813 [17] 周杨, 杨永刚. 不同重构方式下古交典型矿区土壤持水性差异研究. 山西大学学报: 自然科学版, 2022, 45(5): 1369-1376 [18] Zhang YD, Liu SR, Ma JM. Water-holding capacity of ground covers and soils in alpine and sub-alpine shrubs in western Sichuan, China. Acta Ecologica Sinica, 2006, 26: 2775-2782 [19] Zhang Y, E SZ, Wang YA, et al. Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics. Catena, 2021, 203: 105342 [20] 杜韬, 王冬梅, 张泽洲, 等. 煤矸石植生基质保水性能对黑麦草生长的影响. 中国水土保持科学, 2019, 17(4): 75-84 [21] 毕银丽, 吴福勇, 武玉坤. 接种微生物对煤矿废弃基质的改良与培肥作用. 煤炭学报, 2006, 31(3): 365-368 [22] 米美霞, 邵明安, 武小刚, 等. 煤矸石和钙结石对植物生长和土壤含水量的影响. 土壤学报, 2021, 58(6): 1460-1471 [23] Novak V, Knava K. The influence of stoniness and canopy properties on soil water content distribution: Simulation of water movement in forest stony soil. European Journal of Forest Research, 2013, 131: 1727-1735 [24] 董颖, 李娜, 耿玉清, 等. 添加保水剂对煤矸石基质保水性能的影响. 中国水土保持科学, 2020, 18(3): 114-123 [25] Han XN, Dong Y, Geng YQ, et al. Influence of coal gangue mulching with various thicknesses and particle sizes on soil water characteristics. Scientific Reports, 2021, 11: 1-10 [26] Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility. Ⅰ. Theory and metho-dology. European Journal of Soil Science, 2016, 67: 11-21 [27] 刘梦云, 吴健利, 刘丽雯, 等. 黄土台塬土地利用方式对土壤水稳性团聚体稳定性影响. 自然资源学报, 2016, 31(9): 1564-1576 [28] Lv WC, Qiu Y, Xie ZK, et al. Gravel mulching effects on soil physicochemical properties and microbial community composition in the Loess Plateau, northwestern China. European Journal of Soil Biology, 2019, 94: 1-8 [29] 韩贞贵, 周运超, 任娇娇, 等. 马尾松人工林土壤各粒径团聚体湿筛后的有机碳分配. 生态学报, 2021, 41(23): 9388-9398 [30] 李杨, 仲波, 陈冬明, 等. 不同浓度和多样性的根系分泌物对土壤团聚体稳定性的影响. 应用与环境生物学报, 2019, 25(5): 1061-1067 [31] 张静雯. 不同数量黄土改良煤矸石效果及对五种植物生物的影响. 硕士论文. 北京: 北京林业大学, 2012 [32] 魏彬萌, 李忠徽, 王益权. 渭北旱塬苹果园土壤紧实化现状及成因. 应用生态学报, 2021, 32(3): 976-982 [33] 宋楠. 煤矸石山坡面覆盖对土壤改良和植被恢复的影响研究. 硕士论文. 北京: 北京林业大学, 2012 |