应用生态学报 ›› 2024, Vol. 35 ›› Issue (9): 2338-2351.doi: 10.13287/j.1001-9332.202409.030
康斌*
收稿日期:
2024-04-02
接受日期:
2024-06-04
出版日期:
2024-09-18
发布日期:
2025-03-18
通讯作者:
* E-mail: binkang@163.com
作者简介:
康斌, 男, 1975年生, 教授。主要从事鱼类学研究。E-mail: binkang@163.com
KANG Bin
Received:
2024-04-02
Accepted:
2024-06-04
Online:
2024-09-18
Published:
2025-03-18
摘要: 为完成自身生命历程,物种在形态、生理、生态特征等方面表现出相应的功能性状。性状的特征值及其变异和分布是生物多样性的功能组分,即功能多样性,有助于维持生态系统的功能服务与健康运转。对生态系统功能多样性的研究拓宽了人们对生物多样性及其时空变化的理解,为如何将形态结构与生态功能结合的难题找到了一个突破口。本文从物种功能多样性衡量指标的提出、计算和应用入手,全面回顾了功能多样性研究的发展过程,并以案例形式从不同目的、不同角度阐述了它们在鱼类研究中的应用。针对目前的研究现状提出了鱼类功能多样性研究面临的挑战,即急需建立一套有效的性状指标,并关注功能多样性变化的内外机制和环境变化下的性状再分布等。
康斌. 鱼类功能多样性研究历程、挑战与展望[J]. 应用生态学报, 2024, 35(9): 2338-2351.
KANG Bin. History, challenges, and prospects of researches on fish functional diversity[J]. Chinese Journal of Applied Ecology, 2024, 35(9): 2338-2351.
[1] 联合国. 生物多样性公约[EB/OL]. (1992-12-12) [2023-02-08]. https://www.un.org/zh/node/71979 [2] Chapman M, Goldstein BR, Schell CJ, et al. Biodiversity monitoring for a just planetary future. Science, 2024, 383: 34-36 [3] Magurran AE. Measuring biological diversity. Current Biology, 2021, 31: R1174-R1177 [4] Zhu R, He DK, Feng X, et al. The new record of the highest distribution altitude of cyprinid fishes in the world. Journal of Applied Ichthyology, 2021, 37: 474-478 [5] Gerringer ME, Linley TD, Nielsen JG. Revision of the depth record of bony fishes with notes on hadal snailfishes (Liparidae, Scorpaeniformes) and cusk eels (Ophidiidae, Ophidiiformes). Marine Biology, 2021, 168: 167 [6] Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 2011, 48: 1079-1087 [7] Rosenfeld JS. Functional redundancy in ecology and conservation. Oikos, 2002, 98: 156-162 [8] Maire E, Grenouillet G, Brosse S, et al. How many dimensions are needed to accurately assess functional diversity? Global Ecology and Biogeography, 2015, 24: 728-740 [9] Mammola S, Carmona CP, Guillerme T, et al. Concepts and applications in functional diversity. Functional Eco-logy, 2021, 35: 1869-1885 [10] Petchey OL, Gaston KJ. Functional diversity: Back to basics and looking forward. Ecology Letters, 2006, 9: 741-758 [11] Cinner JE, Zamborain-Mason J, Gurney GG, et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science, 2020, 368: 307-311 [12] McGill BJ, Enquist BJ, Weiher E, et al. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 2006, 21: 178-185 [13] Violle C, Enquist BJ, McGill BJ, et al. The return of the variance: Intraspecific variability in community eco-logy. Trends in Ecology & Evolution, 2012, 27(4): 244-252 [14] Violle C, Reich PB, Pacala SW, et al. The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United State of America, 2014, 111: 13690-13696 [15] Kang B, Huang XX, Yan YZ, et al. Continental-scale analysis of taxonomic and functional fish diversity in the Yangtze River Basin. Global Ecology and Conservation, 2018, 15: e00442 [16] Wellnitz T, Poff NL. Functional redundancy in heterogeneous environments: Implications for conservation. Eco-logy Letters, 2001, 4: 177-179 [17] Lin L, Liu Y, Lin H, et al. Considering species functional and phylogenetic rarity in the conservation of fish biodiversity. Diversity and Distributions, 2024, 30: e13804 [18] Guilhaumon F, Albouy C, Claudet J, et al. Representing taxonomic, phylogenetic and functional diversity: New challenges for Mediterranean marine-protected areas. Diversity and Distribution, 2014, 21: 175-187 [19] Limberger R, Daugaard U, Gupta A, et al. Functional diversity can facilitate the collapse of an undesirable ecosystem state. Ecology Letters, 2023, 26: 883-895 [20] Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes. Science, 1997, 277: 1300-1302 [21] 帅方敏, 李新辉, 陈方灿, 等. 淡水鱼类功能多样性及其研究方法. 生态学报, 2017, 37(15): 5228-5237 [22] 张伟, 翟东东, 熊飞, 等. 三峡库区鱼类群落结构与功能多样性. 生物多样性, 2023, 31(2): 22136 [23] 熊飞, 张伟, 翟东东, 等. 蓄水后向家坝库区鱼类物种、分类和功能多样性变化. 湖泊科学, 2024, 36(4): 200-212 [24] 卓玉, 李钧乐, 李英钦, 等. 龙羊峡水库鱼类多维多样性空间分布格局. 水生生物学报, 2024, 48(3): 504-512 [25] 陈康, 孟子豪, 李学梅, 等. 江西柘林水库鱼类群落结构及功能多样性分析. 生态学报, 2022, 42(11): 4592-4602 [26] 苏国欢. 云南高原湖泊鱼类群落种类和功能多样性研究. 硕士论文. 北京: 中国科学院大学, 2016 [27] 王朝, 周立志, 戴秉国, 等. 水位洪枯变化对菜子湖江湖过渡带鱼类物种和功能多样性的影响. 湖泊科学, 2019, 31(5): 1403-1414 [28] 邓文博, 冯凯, 林刚, 等. 禁渔后西凉湖鱼类物种和功能多样性时空格局及其与水环境因子的关系. 水生生物学报, 2023, 47(10): 1681-1692 [29] 吴申浩. 鄱阳湖洪泛平原鱼类群落与功能多样性的联系. 硕士论文. 南昌: 南昌大学, 2020 [30] 巩政, 刘艳超, 冯慧喆, 等. 基于多维度指数的雅鲁藏布江鱼类多样性评价及群落构建过程分析. 湖泊科学, 2024, 36(1): 213-222 [31] 贺佳云, 张东, 储玲, 等. 人为干扰对溪流鱼类功能多样性及其纵向梯度格局的影响. 生物多样性, 2021, 29(7): 927-937 [32] 张倩, 曾燏, 肖瑾, 等. 嘉陵江中游蓬安段鱼类群落功能多样性研究. 水生生物学报, 2022, 46(5): 630-642 [33] 张东. 新安江鱼类分类和功能α、β多样性纵向梯度格局及形成机制. 硕士论文. 芜湖: 安徽师范大学, 2018 [34] 刘昊. 广西红树林区鱼类分类多样性及功能多样性研究. 硕士论文. 桂林: 桂林理工大学, 2021 [35] 冯晨, 何雄波, 招春旭, 等. 闽江口鱼类功能多样性. 应用生态学报, 2019, 30(10): 3589-3595 [36] 张晓妆, 王晶, 徐宾铎, 等. 海州湾鱼类群落功能多样性的时空变化. 应用生态学报, 2019, 30(9): 3233-3244 [37] 阎珂鸣. 雷州湾鱼类群落的功能多样性及其时空格局. 硕士论文. 湛江: 广东海洋大学, 2020 [38] 李众. 台湾海峡西部近岸附着生物群落结构及功能多样性研究. 硕士论文. 厦门: 自然资源部第三海洋研究所, 2019 [39] 邹建宇, 刘淑德, 张崇良, 等. 长山列岛邻近海域鱼类群落功能多样性的季节和空间变化. 海洋学报, 2023, 45(1): 13-24 [40] 郑鹏, 蒋小明, 曹亮, 等. 江湖阻隔背景下东部平原湖泊鱼类功能特征及多样性变化. 湖泊科学, 2022, 34(1): 151-168 [41] 熊鹰. 中国淡水鱼类功能多样性方法与格局的研究. 硕士论文. 武汉: 华中农业大学, 2015 [42] Walker B, Kinzig A, Langridge J. Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems, 1999, 2: 95-113 [43] Tilman D. Functional diversity// Levin SA, ed. Encyclopedia of Biodiversity. New York: Academic Press, 2001, 3: 109-120 [44] Petchey OL, Gaston KJ. Functional diversity (FD), species richness and community composition. Ecology Letters, 2002, 5: 402-411 [45] Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85: 2630-2637 [46] Díaz S, Lavorel S, Bello FD, et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 20684-20689 [47] Mason NWH, MacGillivray K, Steel JB, et al. An index of functional diversity. Journal of Vegetation Science, 2003, 14: 571-578 [48] Mason NWH, Mouillot D, Lee WG, et al. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 2005, 111: 112-118 [49] Mouillot D, Mason NWH, Dumay O, et al. Functional regularity: A neglected aspect of functional diversity. Oecologia, 2005, 142: 353-359 [50] Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412: 72-76 [51] Kinzig AP, Pacala SW, Tilman D. The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions. Princeton, NJ, USA: Princeton University Press, 2002 [52] Cianciaruso MV, Batalha MA, Gaston KJ, et al. Including intraspecific variability in functional diversity. Eco-logy, 2009, 90: 81-89 [53] Mouchet M, Guilhaumon F, Villéger S, et al. Towards a consensus for calculating dendrogram-based functional diversity indices. Oikos, 2008, 117: 794-800 [54] Schmera D, Erõs T, Podani J. A measure for assessing functional diversity in ecological communities. Aquatic Ecology, 2009, 43: 157-167 [55] Petchey OL, Hector A, Gaston KJ. How do different measures of functional diversity perform? Ecology, 2004, 85: 847-853 [56] Podani J, Schmera D. On dendrogram-based measures of functional diversity. Oikos, 2006, 115: 179-185 [57] Villéger S, Mason NWH, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 2008, 89: 2290-2301 [58] Schleuter D, Daufresne M, Massol F, et al. A user's guide to functional diversity indices. Ecological Monographs, 2010, 80): 469-484 [59] Mouchet M, Villéger S, Mason NWH, et al. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 2010, 24: 867-876 [60] Carmona CP, Bello FD, Mason NWH, et al. Traits without borders: Integrating functional diversity across scales. Trends in Ecology & Evolution, 2016, 31: 382-394 [61] Scheiner SM, Kosman E, Presley SJ, et al. Decomposing functional diversity. Methods in Ecology and Evolution, 2017, 8: 809-820 [62] Schmera D, Ricotta C, Podani J. Components of functional diversity revisited: A new classification and its theoretical and practical implications.Ecology and Evolution, 2023, 13: e10614 [63] Botta-Dukát Z. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 2005, 16: 533-540 [64] Ricotta C, Moretti M. CWM and Rao's quadratic diversity: A unified framework for functional ecology. Oecologia, 2011, 167: 181-188 [65] Kader G, Perry M. Variability for categorical variables. Journal of Statistics and Data Science Education, 2007, 15: 1-17 [66] Lepš J, Francesco DB, Lavorel S, et al. Quantifying and interpreting functional diversity of natural communities: Practical considerations matter. Preslia, 2006, 78: 481-501 [67] Ricotta C, Moretti M. Quantifying functional diversity with graph-theoretical measures: Advantages and pitfalls. Community Ecology, 2008, 9: 11-16 [68] Bello FD, Lepš J, Lavorel S, et al. Importance of species abundance for assessment of trait composition: An example based on pollinator communities. Community Ecology, 2007, 8: 163-170 [69] Laliberté E, Wells JA, DeClerck F, et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters, 2010, 13: 76-86 [70] Laliberté E, Legendre P. A distance-based framework for measuring functional diversity from multiple traits. Ecology, 2010, 91: 299-305 [71] Mouillot D, Villéger S, Scherer-Lorenzen M, et al. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One, 2011, 6(3): e17476 [72] Mouillot D, Graham NAJ, Villéger S, et al. Functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 2013, 28: 167-177 [73] Mouillot D, Villéger S, Parravicini V, et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 13757-13762 [74] Ricotta C, Bello DF, Moretti M, et al. Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology and Evolution, 2016, 7: 1386-1395 [75] Grenié M, Denelle P, Tucker CM, et al. funrar: An R package to characterize functional rarity. Diversity and Distributions, 2017, 23: 1365-1371 [76] Heemsbergen DA, Berg MP, Loreau M, et al. Biodiversity effects on soil processes explained by intraspecific functional dissimilarity. Science, 2004, 306: 1019-1020 [77] Webb CO. Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 2000, 156: 145-155 [78] Lavorel S, Grigulis K, McIntyre S, et al. Assessing functional diversity in the field-methodology matters! Functional Ecology, 2008, 16: 134-147 [79] Knapp S. The Link Between Diversity, Ecosystem Functions, and Ecosystem Services// Schröter M, Bonn A, Klotz S, Seppelt R, eds. Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses. Zurich, Switzerland: Springer Nature, 2019: 13-16 [80] Winemiller KO. Ecomorphological diversification of freshwater fish assemblages from five biotic regions. Ecological Monographs, 1991, 61: 343-365 [81] Winemiller KO, Rose KA. Patterns of life-history diversification in North American fishes: Implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49: 2196-2218 [82] Winemiller KO. Fish ecology// Nierenberg WA, ed. Encyclopedia of Environmental Biology, Vol. 2. San Diego, CA, USA: Academic Press, 1995: 49-65 [83] Stuart-Smith RD, Bates AE, Lefcheck JS, et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 2013, 501: 539-542 [84] Díaz S, Symstad AJ, Chapin FS, et al. Functional diversity revealed by removal experiments. Trends in Ecology and Evolution, 2003, 18: 140-146 [85] Pool TK, Grenouillet G, Villeger S. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Diversity and Distributions, 2014, 20: 1235-1244 [86] Leitão RP, Zuanon J, Mouillot D, et al. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 2018, 41: 219-232 [87] Scherer L, Boom HA, Barbarossa V, et al. Climate change threats to the global functional diversity of freshwater fish. Global Change Biology, 2023, 29: 3781-3793 [88] Lin L, Liu Y, Yan Y, et al. Optimizing efficiency and resilience of no-take marine protected areas for fish conservation under climate change in coastal China Sea. Conservation Biology, 2023, 37: e14174 [89] Trindade-Santos I, Moyes F, Magurran AE. Global change in the functional diversity of marine fisheries exploitation over the past 65 years. Proceedings of the Royal Society-Biological Sciences, 2020, 287: 0889 [90] Toussaint A, Charpin N, Beauchard O, et al. Non-native species led to marked shifts in functional diversity of the world freshwater fish faunas. Ecology Letters, 2018, 21: 1649-1659 [91] Su G, Tedesco PA, Toussaint A, et al. Contemporary environment and historical legacy explain functional diversity of freshwater fishes in the world rivers. Global Ecology and Biogeography, 2022, 31: 700-713 [92] Huang XX, Kang B, Lin L, et al. Geology, climate, and hydrochemistry shape the spatial patterns of multiple diversity facets and functional traits of fishes. Eco-logy of Freshwater Fish, 2023, 32: 375-387 [93] Baselga A. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 2010, 19: 134-143 [94] Baselga A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 2012, 21: 1223-1232 [95] Villéger S, Grenouillet G, Brosse S. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 2013, 22: 671-681 [96] Legendre P. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography, 2014, 23: 1324-1334 [97] Lin L, Deng W, Huang X, et al. Fish taxonomic, functional, and phylogenetic diversity and their vulnerabilities in the largest river in southeastern China. Ecology and Evolution, 2021, 11: 11533-11548 [98] Lin L, Deng W, Huang X, et al. How fish traits and functional diversity respond to environmental changes and species invasion in the largest river in Southeastern China. PeerJ, 2021, 9: e11824 [99] Díaz S, Kattge J, Cornelissen JHC, et al. The global spectrum of plant form and function. Nature, 2016, 529: 167-171 [100] Legras G, Loiseau N, Gaertner JC, et al. Assessing functional diversity: The influence of the number of the functional traits. Theoretical Ecology, 2020, 13: 117-126 [101] Laughlin DC. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 2014, 17: 771-784 [102] Blonder B. Do hypervolumes have holes? The American Naturalist, 2016, 187: E93-E105 [103] Pavoine S, Bonsall MB. Measuring biodiversity to explain community assembly: A unified approach. Biolo-gical Reviews, 2011, 86: 792-812 [104] Gruson H. Estimation of colour volumes as concave hypervolumes using α-shapes. Methods in Ecology and Evolution, 2020, 11: 955-963 [105] Micó E, Ramilo P, Thorn S, et al. Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Scientific Reports, 2020, 10: 1520 [106] Brum FT, Graham CH, Costa GC, et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 7641-7646 [107] Kosman E, Burgio KR, Presley SJ, et al. Conservation prioritization based on trait-based metrics illustrated with global parrot distributions. Diversity and Distributions, 2019, 25: 1156-1165 [108] Carmona CP, Tamme R, Pärtel M, et al. Erosion of global functional diversity across the tree of life. Science Advances, 2021, 7: eabf2675 [109] Perronne R, Munoz F, Borgy B, et al. How to design trait-based analyses of community assembly mechanisms: insights and guidelines from a literature review. Perspective in Plant Ecology, Evolution and Systema-tics, 2017, 25: 29-44 [110] Galland T, Carmona CP, Götzenberger L, et al. Are redundancy indices redundant? An evaluation based on parameterized simulations. Ecological Indicators, 2020, 116: 106488 [111] Ricotta C, Laroche F, Szeidl L, et al. From alpha to beta functional and phylogenetic redundancy. Methods in Ecology and Evolution, 2020, 11: 487-493 [112] Kang B, Wang L, Liu M. Species traits determined different responses to “zero-growth” policy in China's marine fisheries. Scientific Reports, 2022, 12: 20410 [113] Kang B, Vitule JRS, Li S, et al. Introduction of non-native fish for aquaculture in China: A systematic review. Reviews in Aquaculture, 2023, 15: 676-703 [114] Kraft NJB, Adler PB, Godoy O, et al. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 2015, 29: 592-599 [115] Violle C, Navas ML, Vile D, et al. Let the concept of trait be functional! Oikos, 2007, 116: 882-892 [116] Benkwitt CE, Wilson SK, Graham NAJ. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nature Ecology and Evolution, 2020, 4: 919-926 [117] Díaz S, Cabido M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecology and Evolution, 2001, 16: 646-655 [118] Bernhardt-Römermann M, Römermann C, Sperlich S, et al. Explaining grassland biomass: The contribution of climate, species and functional diversity depends on fertilization and mowing frequency. Journal of Applied Ecology, 2011, 48: 1088-1097 [119] Roscher C, Schumacher J, Gubsch M, et al. Using plant functional traits to explain diversity-productivity relationships. PLoS One, 2012, 7(5): e36760 [120] MacArthur R. Fluctuations of animal populations, and a measure of community stability. Ecology, 1955, 36:533-536 [121] Grime JP. Benefits of plant diversity to ecosystems: Inmediate, filter and founder effects. Journal of Ecology, 1998, 86: 902-910 [122] Maureaud A, Hodapp D, Denderen PDV, et al. Biodiversity-ecosystem functioning relationships in fish communities: Biomass is related to evenness and the environment, not to species richness. Proceedings of the Royal Society B-Biological Sciences, 2019, 286: 1189 [123] Legendre P, Galzin R, Harmelin-Vivien ML. Relating behavior to habitat: Solutions to the fourth-corner problem. Ecology, 1997, 78: 547-562 [124] Higham TE, Ferry LA, Schmitz L, et al. Linking ecomechanical models and functional traits to understand phenotypic diversity. Trends in Ecology & Evolution, 2021, 36: 860-873 [125] Fisher RA, Corbet AS, Williams CB. The relation between the number of species and number of individuals in a random sample of an animal population. Journal of Animal Ecology, 1943, 12: 42-58 [126] Whittaker RH. Evolution and measurement of species diversity. Taxon, 1972, 21: 213-251 [127] Warwick RM, Clarke KR. New ‘biodiversity' measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series, 1995, 129: 301-305 [128] Clarke KR, Gorley RN. PRIMER v6: user manual/tutorial. Plymouth, UK: PRIMER, 2006 [129] Faith DP. Conservation evaluation and phylogenetic diversity. Biological Conservation, 1992, 61: 1-10 [130] Casanoves F, Pla L, Di Rienzo JA, et al. FDiversity: A software package for the integrated analysis of functional diversity. Methods in Ecology and Evolution, 2011, 2: 233-237 [131] Cornwell WK, Schwilk DW, Ackerly DD. A trait-based test for habitat filtering: Convex hull volume. Ecology, 2006, 87: 1465-1471 [132] Pla L, Casanoves F, Rienzo DJ, et al. Confidence intervals for functional diversity indices considering species abundance. International Biometric Conference. Dublin, 2008 [133] Pavoine S. Adiv: An R package to analyze biodiversity in ecology. Methods in Ecology and Evolution, 2020, 11: 1106-1112 [134] Cardoso P, Mammola S, Rigal F, et al. BAT: Biodiversity Assessment Tools. R package version 2.6.0, 2021 [135] Cardoso P, Rigal F, Carvalho JC. BAT-biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution, 2015, 6: 232-236 [136] Oksanen J, Blanchet FG, Friendly M, et al. Vegan: Community Ecology Package. Ordination Methods, Diversity Analysis and Other Functions for Community and Vegetation Ecologists [EB/OL]. (2018-05-16) [2022-02-08]. https://CRAN.R-project.org/package=veganComprehensiveRArchiveNetwork, 2018 [137] Dray S, Dufour A. The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 2007, 22: 1-20 [138] Marcon E, Hérault B. entropart: Entropy Partitioning to Measure Diversity. R package version 1.4.1, 2015 [139] Laliberté E, Legendre P, Shipley B. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology [EB/OL]. (2014-08-19) [2023-11-26]. https://cran.r-project.org/web//packages/FD/FD.pdf [140] Li DJ. hillR: taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. The Journal of Open Source Software, 2018, 3: 1041 [141] Kembel S, Cowan P, Helmus M, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26: 1463-1464 [142] Carmona CP. TPD: Methods for measuring functional diversity based on trait probability density. R package version 1.1.0, 2019 [143] Baselga A, Orme D, Villéger S, et al. Betapart: Partitioning Beta Diversity into Turnover and Nestedness Components [EB/OL]. (2023-03-13) [2023-11-26]. https://mirror.rcg.sfu.ca/mirror/CRAN/web/packages/betapart/betapart.pdf [144] Junker RR, Kuppler J, Bathke AC, et al. Dynamic range boxes: A robust nonparametric approach to quantify size and overlap of n-dimensional hypervolumes. Methods in Ecology and Evolution, 2016, 7: 1503-1513 [145] Blonder B. hypervolume: High Dimensional Geometry and Set Operations using Kernel Density Estimation, Support Vector Machines, and Convex Hulls[EB/OL]. (2018-05-12) [2023-10-06]. https://cran.r-project.org/web//packages/hypervolume/hypervolume.pdf [146] Swanson HK, Lysy MM, Power AD, et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology, 2015, 96: 318-324 [147] Magneville C, Loiseau N, Albouy C, et al. mFD: An R package to compute and illustrate the multiple facets of functional diversity. Ecography, 2022, e05904 [148] Grenié M, Gruson H. fundiversity: A modular R package to compute functional diversity indices. Ecography, 2023, 2023: e06585 |
[1] | 谷昌军, 张镱锂, 刘林山, 魏博, 宫殿清, 崔伯豪. 放牧压力表述的分异及其适用场景 [J]. 应用生态学报, 2023, 34(2): 433-441. |
[2] | 陈娜, 向辉, 马伯, 黎璟玉. 基于韧性理念的中国城市雨洪管理研究热点与趋势 [J]. 应用生态学报, 2022, 33(11): 3137-3145. |
[3] | 宋洁, 刘学录. 基于Web of Science的国际应用生态学研究进展 [J]. 应用生态学报, 2019, 30(3): 1067-1078. |
[4] | 巩杰, 徐彩仙, 燕玲玲, 郭青海. 1997—2018年生态系统服务研究热点变化与动向 [J]. 应用生态学报, 2019, 30(10): 3265-3276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||