欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2024, Vol. 35 ›› Issue (10): 2794-2802.doi: 10.13287/j.1001-9332.202410.003

• • 上一篇    下一篇

基于近红外光谱的木荷木纤维解剖结构PLSR模型构建

林诚富1,2, 邵文3, 王家燚4, 张蕊2*, 马丽珍3, 黄少华3, 范辉华5, 周志春2   

  1. 1东北林业大学林学院, 哈尔滨 150040;
    2中国林业科学研究院亚热带林业研究所/全省林木育种重点实验室, 杭州 311400;
    3福建省建瓯市林业技术推广中心, 福建建瓯 353100;
    4河北农业大学林学院, 河北保定 071000;
    5福建省林业科学研究院, 福州 350012
  • 收稿日期:2024-03-19 接受日期:2024-08-12 出版日期:2024-10-18 发布日期:2025-04-18
  • 通讯作者: * E-mail: zhangruicaf@caf.ac.cn
  • 作者简介:林诚富, 男, 1996年生, 硕士研究生。主要从事林木遗传育种研究。E-mail: 877582304@qq.com
  • 基金资助:
    浙江省农业(林木)新品种选育重大科技专项重点课题(2021C02070-9)、福建省林木种苗科技攻关七期项目(ZMGG-0703)和江西省林业科技创新项目(201919)

PLSR model based on near-infrared spectroscopy for the detection of wood fiber anatomy of Schima superba.

LIN Chengfu1,2, SHAO Wen3, WANG Jiayi4, ZHANG Rui2*, MA Lizhen3, HUANG Shaohua3, FAN Huihua5, ZHOU Zhichun2   

  1. 1School of Forestry, Northeast Forestry University, Harbin 150040, China;
    2Research Institute of Subtropical Forestry, Chinese Academy of Forestry/Zhejiang Key Laboratory of Forest Genetics and Bree-ding, Hangzhou 311400, China;
    3Extending Center for Forestry Science and Technology of Jian’ou City, Fujian Province, Jian’ou 353100, Fujian, China;
    4College of Forestry, Hebei Agricultural University, Baoding 071000, Hebei, China;
    5Fujian Academy of Forestry Sciences, Fuzhou 350012, China
  • Received:2024-03-19 Accepted:2024-08-12 Online:2024-10-18 Published:2025-04-18

摘要: 为快速获取木荷木纤维表型数据以评估木材质量,对18年生20个种源100个材料使用便携式近红外光谱仪采集光谱数据,同时测定木纤维基本密度和解剖结构等9个指标,通过SNV、OSC和MSC预处理光谱数据,并用CARS筛选波长,建立PLSR模型。结果表明: 林地与室内光谱数据存在显著差异,两者的光谱数据相对独立。SNV、OSC和MSC三种预处理方法对模型的预测效果差异显著,其中,OSC在林地和室内多项木纤维表型结构特征光谱预处理上表现优异,模型的预测精度林地R2=0.47~0.78(平均0.63),室内R2=0.54~0.82 (平均0.71)。而SNV和MSC方法仅对林地数据建立壁腔比模型的预测效果较好,其余模型效果不佳。通过CARS方法筛选波长后,林地和室内数据构建的模型预测精度得到有效提升(R2=0.58和0.72)。在CARS前后各执行一次OSC时,林地和室内数据构建的模型预测精度可分别提升至0.68和0.84。OSC预处理和CARS方法可以有效提高木纤维解剖结构构建模型的精度。木纤维长、双壁厚、腔径、木材基本密度、腔宽比和壁腔比可先通过OSC结合CARS进行处理,在经过一次OSC处理后建立PLSR模型,模型预测精度R2在0.80~0.95,可以预测评估木荷类木纤维物理性质指标。

关键词: 近红外光谱技术, 光谱分析, PLSR, 木荷, 木纤维

Abstract: To rapidly acquire fiber phenotypic data for wood quality assessment, we used a portable NIR spectro-meter to collect spectral data in 100 individuals of Schima superba at 18-year-old of 20 different provenances, and simultaneously collected wood cores. Wood basic density and the anatomical structure of wood fiber were measured. The standard normal variate (SNV), orthogonal signal correction (OSC), and multiplicative scatter correction (MSC) methods were used for spectral preprocessing, the competitive adaptive reweighted sampling (CARS) method were used for wavelength selection, and the partial least squares regression (PLSR) model were established. The results showed a significant difference for the absolute reflectance data between forest and indoor environments, and the spectral data of which were relatively independent. SNV, OSC and MSC showed significant differences for predictive performance of the model. OSC had the excellent preprocessing capability in multiple cha-racteristics of wood fiber ether in forest and indoor environments. The predictive accuracy of the models with R2 was 0.47-0.78 in forest (average=0.63), and R2 was 0.54-0.82 in indoor environment (average=0.71). However, the SNV and MSC methods could not establish the models, except the fiber wall-cavity ratio from forest data. After wavelength selection through the CARS method, the predictive accuracy of the models was significantly improved using both forest and indoor data (R2=0.58 and 0.72, respectively). When performed OSC before and after CARS, the predictive accuracy of the models was improved to 0.68 and 0.84 respectively using forest and indoor data. The OSC and CARS could significantly improve the accuracy of the models for wood fiber anatomical structures. First OSC, then CARS, and finally OSC methods could be used to establish the PLSR model for fiber length, fiber cell wall thickness, fiber lumen diameter, wood basic density, fiber cavity-width ratio, and fiber wall-cavity ratio, and the R2 ranged from 0.80 to 0.95. These models had effective predictive ability and accuracy to assess the physical properties of wood fibers of S. superba.

Key words: near-infrared spectroscopy, spectral analysis, PLSR, Schima superb, wood fiber