[1] Malej A, Turk V, Lučić D, et al. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology, 2007, 151: 827-841 [2] Colin SP, Costello JH, Graham WM, et al. Omnivory by the small cosmopolitan hydromedusa Aglaura hemistoma. Limnology & Oceanography, 2005, 50: 1264-1268 [3] Lilley MKS, Houghton JDR, Hays GC. Distribution, extent of inter-annual variability and diet of the bloom-forming jellyfish Rhizostoma in European waters. Journal of the Marine Biological Association of the United Kingdom, 2009, 89: 39-48 [4] Riascos JM, Villegas V, Pacheco AS. Diet composition of the large scyphozoan jellyfish Chrysaora plocamia in a highly productive upwelling centre off northern Chile. Marine Biology Research, 2014, 10: 791-798 [5] Purcell JE, Milisenda G, Rizzo A, et al. Digestion and predation rates of zooplankton by the pleustonic hydro-zoan Velella velella and widespread blooms in 2013 and 2014. Journal of Plankton Research, 2015, 37: 1056-1067 [6] Morais P, Parra MP, Marques R, et al. What are jellyfish really eating to support high ecophysiological condition? Journal of Plankton Research, 2015, 37: 1036-1041 [7] Javidpour J, Cipriano-Maack AN, Mittermayr A, et al. Temporal dietary shift in jellyfish revealed by stable isotope analysis. Marine Biology, 2016, 163: 112 [8] Milisenda G, Rossi S, Vizzini S, et al. Seasonal variability of diet and trophic level of the gelatinous predator Pelagia noctiluca (Scyphozoa). Scientific Reports, 2018, 8: 12140 [9] Sun TT, Wang L, Zhao JM, et al. Application of DNA metabarcoding to characterize the diet of the moon jellyfish Aurelia coerulea polyps and ephyrae. Acta Oceanologica Sinica, 2021, 40: 160-167 [10] 王摆, 田甲申, 周遵春. 海蜇-对虾-蛤仔综合养殖池塘的食物网. 应用生态学报, 2021, 32(6): 2028-2034 [11] 李玉龙, 高祥刚, 鲍相渤, 等. 海蜇摄食生态学研究进展. 水产科学, 2022, 41(5): 899-904 [12] 金鑫, 李超伦, 刘梦坛. 基于脂肪酸标记法和碳氮稳定同位素比值法的东海水母常见种的食性分析. 海洋与湖沼, 2012, 43(3): 486-493 [13] 王俊健, 王楠, 王彦涛, 等. 红沿河海域常见水母的食物组成分析: 基于稳定同位素和脂肪酸标记法. 海洋与湖沼, 2021, 52(1): 132-143 [14] 孙明, 王彬, 李玉龙, 等. 基于碳氮稳定同位素技术研究辽东湾海蜇的食性和营养级. 应用生态学报, 2016, 27(4): 1103-1108 [15] 张健, 王佚兮, 冯慧敏, 等. 基于脂肪酸标记法和稳定同位素技术的通州湾养殖水域海蜇食性分析. 南方水产科学, 2021, 17(1): 25-31 [16] 李玉龙, 鲍相渤, 高祥刚, 等. DNA条形码在海蜇食物组成鉴定中的应用. 水产科学, 2022, 41(4): 614-621 [17] 徐盛楠, 孙婷婷, 彭赛君, 等. 基于高通量测序技术的两种水螅水母现场食物研究. 应用海洋学学报, 2020, 39(1): 49-56 [18] Hoss M, Kohn M, Paabo S. Excrement analysis by PCR. Nature, 1992, 359: 199 [19] Asahida T, Yamashita Y, Kobayashi T. Identification of consumed stone flounder, Kareius bicoloratus (Basilewsky), from the stomach contents of sand shrimp, Crangon affinis (De Haan) using mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology, 1997, 217: 153-163 [20] 林先智, 胡思敏, 刘胜, 等. 传统测序与高通量测序在稚鱼食性分析中的比较. 应用生态学报, 2018, 29(9): 3093-3101 [21] Sousa LL, Xavier R, Costa V, et al. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish. Scientific Reports, 2016, 6: 28762 [22] 彭步青, 陶玲, 李靖, 等. 基于DNA宏条形码研究四川老君山国家级自然保护区6种同域共存小型哺乳动物的食性. 生物多样性, 2023, 31(4): 22474 [23] 张宇洋, 董建宇, 孙昕, 等. 基于DNA分子生物学食性研究领域的文献计量分析. 水产科学, 2022, 41(1): 160-172 [24] Pompanon F, Deagle BE, Symondson WOC, et al. Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology, 2012, 21: 1931-1950 [25] Zinger L, Bonin A, Alsos IG, et al. DNA metabarco-ding: Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 2019, 28: 1857-1862 [26] Leray M, Yang JY, Meyer CP, et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Frontiers in Zoology, 2013, 10: 34 [27] Meyer CP. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tro-pics. Biological Journal of the Linnean Society, 2003, 79: 401-459 [28] 董婧, 姜连新, 孙明, 等. 渤海与黄海北部大型水母生物学研究. 北京: 海洋出版社, 2013 [29] 李玉龙, 鲍相渤, 李轶平, 等. 基于环境DNA宏条形码技术的辽东湾典型围海养殖池塘内水母多样性研究. 生态学报, 2022, 42(13): 5303-5313 [30] Wang Q, Garrity GM, Tiedje JM, et al. Nave Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73: 5261-5267 [31] Pruesse E, Quast C, Knittel K, et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 2007, 35: 7188-7196 [32] Zhu F, Massana R, Not F, et al. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiology Ecology, 2005, 52: 79-92 [33] Godhe A, Asplund ME, Härnström K, et al. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Applied and Environmental Microbiology, 2008, 74: 7174-7182 [34] 宋伦, 毕相东, 宋广军, 等. 海洋真核微藻粒级结构及其环境影响因素. 中国环境科学, 2020, 40(6): 2627-2634 [35] Albaina A, Aguirre M, Abad D, et al. 18S rRNA V9 metabarcoding for diet characterization: A critical evaluation with two sympatric zooplanktivorous fish species. Ecology and Evolution, 2016, 6: 1809-1824 [36] Ivlev VS. Experimental Ecology of the Feeding of Fishes. New Haven, CT, USA: Yale University Press, 1961: 302 [37] 刘刚, 宁宇, 夏晓飞, 等. 高通量测序技术在野生动物食性分析中的应用. 生态学报, 2018, 38(9): 3347-3356 [38] 高小迪, 陈新军, 李云凯. 水生食物网研究方法的发展和应用. 中国水产科学, 2018, 25(6): 1347-1360 [39] Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell, 2016, 166: 1103-1116 [40] Boyer F, Mercier C, Bonin A, et al. Obitools: A unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 2016, 16: 176-182 |