[1] 展海银, 周启星. 胜利油田石油开采场地污染特征、源汇关系与管控对策. 生态学杂志, 2023, 42(9): 2256-2265 [2] 李瑞祥, 杨雪纯, 王艳芳, 等. 石油污染从微观修复到生态调控的生态学转变[EB/OL]. (2023-12-05) [2024-04-26]. 环境科学, https://doi.org/10.13227/j.hjkx.202310166 [3] Hussain I, Puschenreiter M, Gerhard S, et al. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environmental and Experimental Botany, 2018, 147: 202-219 [4] Wang A, Fu WX, Feng Y, et al. Synergetic effects of microbial-phytoremediation reshape microbial communities and improve degradation of petroleum contaminants. Journal of Hazardous Materials, 2022, 429: 128396 [5] 孔德康, 王红旗, 刘自力, 等. 植物-微生物修复石油烃污染土壤与根际微生态环境变化. 生态毒理学报, 2017, 12(3): 644-651 [6] 佟莉蓉, 倪顺刚, 周亚楠, 等. 不同种衣剂配方对达乌里胡枝子种子发芽和幼苗生长的影响. 草业学报, 2021, 30(2): 124-134 [7] Ma Y. Seed coating with beneficial microorganisms for precision agriculture. Biotechnology Advances, 2019, 37: 107423 [8] Khan N, Mishra A, Chauhan PS, et al. Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Annals of Applied Biology, 2011, 159: 372-386 [9] Shahzad S, Khan MY, Zahir ZA, et al. Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions. Pakistan Journal of Botany, 2017, 49: 1523-1530 [10] 石润, 李法云, 周纯亮, 等. 凤仙花种子包衣载体固定化微生物修复石油烃污染土壤的效应. 生态环境学报, 2023, 32(9): 1700-1708 [11] 李方一, 黄璜, 官春云, 等. 单株籽粒丰产甘蓝型油菜理想株型构建研究[EB/OL]. (2023-09-05) [2024-04-26]. 中国油料作物学报, https://link.cnki.net/urlid/42.1429.S.20230904.1339.012 [12] 花炜, 余成, 段高旗, 等. 水下光补偿设备对苦草生长生理影响研究. 环境科学学报, 2024, 44(3): 450-458 [13] 郭晖, 冯文君, 朱红霞, 等. 土壤盐胁迫下4种园林植物的生理抗性. 江苏农业科学, 2017, 45(14): 115-118 [14] 王如刚, 王敏, 牛晓伟, 等. 超声-索氏萃取-重量法测定土壤中总石油烃含量. 分析化学, 2010, 38(3): 417-420 [15] Lin MX, Li FY, Wang W, et al. Interfacial chemical behaviors and petroleum hydrocarbon removal perfor-mances of the biochar-mineral composites prepared by one-step pyrolysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130217 [16] Cevher-Keskin B, Selçukcan-Erol Ç, Yüksel B, et al. Comparative transcriptome analysis of Zea mays in response to petroleum hydrocarbon stress. Environmental Science and Pollution Research, 2018, 25: 32660-32674 [17] 李志杰, 郭长城, 石杰, 等. 高通量测序解析多环芳烃污染盐碱土壤翅碱蓬根际微生物群落多样性. 微生物学通报, 2017, 44(7): 1602-1612 [18] Allamin IA, Halmi MIE, Yasid NA, et al. Rhizodegradation of petroleum oily sludge-contaminated soil using Cajanus cajan increases the diversity of soil microbial community. Scientific Reports, 2020, 10: 4094 [19] Shi L, Liu ZZ, Yang LY, et al. Effects of oil pollution on soil microbial diversity in the Loess hilly areas, China. Annals of Microbiology, 2022, 72: 26 [20] 王娟, 张亚妮, 熊乙, 等. 不同种衣剂配方对达乌里胡枝子种子萌发的影响. 草地学报, 2020, 28(1): 237-244 [21] Piri R, Moradi A, Balouchi H, et al. Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Scientia Horticulturae, 2019, 257: 108667 [22] 贾峥嵘, 刘秀珍, 卜玉山, 等. 膨润土对铜污染土壤油菜生长和抗性生理的影响. 山西农业大学学报: 自然科学版, 2013, 33(3): 250-254 [23] Hou LQ, Liu R, Li N, et al. Study on the efficiency of phytoremediation of soils heavily polluted with PAHs in petroleum-contaminated sites by microorganism. Environmental Science and Pollution Research, 2019, 26: 31401-31413 [24] Wu YB, Cheng ZB, Wu CW, et al. Water conditions and arbuscular mycorrhizal symbiosis affect the phytoremediation of petroleum-contaminated soil by Phragmites australis. Environmental Technology & Innovation, 2023, 32: 103437 [25] Hoang SA, Lamb D, Sarkar B, et al. Plant-derived saponin enhances biodegradation of petroleum hydrocarbons in the rhizosphere of native wild plants. Environmental Pollution, 2022, 313: 120152 [26] 李娜, 刘睿, 台培东, 等. 植物-固定化菌剂联合修复多环芳烃污染土壤. 应用生态学报, 2021, 32(8): 2982-2988 [27] Zhang B, Zhang L, Zhang XX. Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Advances, 2019, 9: 35304-35311 [28] Bell T, Newman JA, Silverman BW, et al. The contribution of species richness and composition to bacterial services. Nature, 2005, 436: 1157-1160 [29] 柳晓东, 余天飞, 邓振山, 等. Neorhizobium petrolearium OS53联合紫花苜蓿协同修复石油污染土壤研究. 微生物学报, 2024, 64(3): 854-868 [30] Zhang XN, Chi GJ, Xia HR, et al. Deciphering the Helianthus annus rhizosphere soil biodiversity under petroleum hydrocarbon compounds contamination. Process Safety and Environmental Protection, 2023, 178: 795-806 [31] 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展. 微生物学报, 2021, 61(2): 231-248 [32] Xun WB, Li W, Xiong W, et al. Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications, 2019, 10: 3833 [33] Geng PX, Ma AZ, Wei XX, et al. Interaction and spatio-taxonomic patterns of the soil microbiome around oil production wells impacted by petroleum hydrocarbons. Environmental Pollution, 2022, 307: 119531 [34] Shahi A, Aydin S, Ince B, et al. Reconstruction of bacterial community structure and variation for enhanced petroleum hydrocarbons degradation through biostimulation of oil contaminated soil. Chemical Engineering Journal, 2016, 306: 60-66 [35] 李菁, 张小飞, 张惠雯, 等. 盐胁迫对白及根际细菌群落组成及多样性的影响. 应用生态学报, 2024, 35(1): 219-228 [36] Hou XR, Ji L, Li T, et al. Effects of salt stress on the structure and function of oil-contaminated soil bacteria. Water Air Soil Pollution, 2022, 233: 349 [37] Bhuyan B, Kotoky R, Pandey P. Impacts of rhizoreme-diation and biostimulation on soil microbial community, for enhanced degradation of petroleum hydrocarbons in crude oil-contaminated agricultural soils. Environmental Science and Pollution Research, 2023, 30: 94649-94668 [38] Laiq M, Azeem MA, Begum S, et al. Compositional shifts in rhizobacterial communities of Brassica napus under salinity stress. Applied Soil Ecology, 2024, 195: 105258 [39] Zhang SH, Zhang MR, Han F, et al. Enhanced degradation of petroleum in saline soil by nitrogen stimulation and halophilic emulsifying bacteria Bacillus sp. Z-13. Journal of Hazardous Materials, 2023, 459: 132102 |