欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2024, Vol. 35 ›› Issue (11): 3085-3094.doi: 10.13287/j.1001-9332.202411.012

• • 上一篇    下一篇

基于无人机高光谱数据的耕地土壤盐分反演模型优选

程俊恺1, 冯秀丽1*, 陈立波2, 高天宇1, 杜美瑾1, 刘治远1   

  1. 1宁波大学地理与空间信息技术系, 浙江宁波 315211;
    2宁波市测绘和遥感技术研究院, 浙江宁波 315042
  • 收稿日期:2024-05-07 修回日期:2024-09-04 出版日期:2024-11-18 发布日期:2025-05-18
  • 通讯作者: *E-mail: fengxiuli@nbu.edu.cn
  • 作者简介:程俊恺, 男, 2000年生, 硕士研究生。主要从事土壤遥感反演研究。E-mail: 2211420001@nbu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42171255)

Optimal inversion model for cultivated land soil salinity based on UAV hyperspectral data.

CHENG Junkai1, FENG Xiuli1*, CHEN Libo2, GAO Tianyu1, DU Meijin1, LIU Zhiyuan1   

  1. 1Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, Zhejiang, China;
    2Ningbo Institute of Surveying, Mapping and Remote Sensing, Ningbo 315042, Zhejiang, China
  • Received:2024-05-07 Revised:2024-09-04 Online:2024-11-18 Published:2025-05-18

摘要: 土壤盐渍化是制约农业生产安全的常见问题,快速准确地获取土壤盐分信息,对改良和解决土壤盐渍化具有重要意义。本研究以无人机(UAV)高光谱遥感数据为数据源,针对耕地的不同土地利用现状,根据不同光谱转换数据筛选特征波段集合,最终对比支持向量机(SVR)、反向传播神经网络(BPNN)和随机森林回归(RFR)模型的精度,提出区域耕地土壤盐分的最佳反演模型。结果表明: 采用一阶微分的光谱转换数据与随机森林回归方法结合的反演模型精度最高;针对不同土地利用现状的耕地分别进行特征波段的提取能确保模型整体精度更高,其决定系数为0.885,均方根误差为0.413,相对分析误差为4.208。研究结果可为机载高光谱实现耕地土壤盐分的高精度反演提供参考,为耕地盐碱化防治提供科学依据。

关键词: 无人机高光谱遥感, 土壤盐分反演模型, 谱聚类, 光谱转换, 竞争性自适应重加权

Abstract: Soil salinization is a common factor constraining agricultural production safety, achieving rapid and accurate acquisition of cultivated land soil salinity information is of paramount importance for ameliorating and resolving soil salinization problems. In this study, with unmanned aerial vehicle (UAV) hyperspectral remote sensing data as the data source, we selected feature band subsets using various spectral transformation data based on different land use statuses of cultivated land, to compare the model accuracies of Support Vector Machine (SVR), Back Propagation Neural Network (BPNN) and Random Forest regression (RFR), and propose the optimal inversion model for regional cultivated land soil salinity. The results showed that the inversion model combining first-order differential spectral transformation data with RFR achieved the highest accuracy. Extracting feature bands separately for cultivated land with different land use statuses would ensure a higher overall model accuracy, with a coefficient of determination of 0.885, a root mean square error of 0.413, and a ratio of performance to deviation of 4.208. Our results could provide a reference for achieving high-precision inversion of soil salinity in cultivated land by UAV hyperspectral technology, and offer scientific support for the prevention and control of soil salinization in cultivated land.

Key words: UAV hyperspectral remote sensing, soil salinity inversion model, spectral clustering, spectral conversion, competitive adaptive reweighted sampling