[1] Mogollón JM, Beusen AHW, van Grinsven HJM, et al. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change, 2018, 50: 149-163 [2] 祝晓慧, 谭婧琳, 周慧颖, 等. 不同基因型大豆与玉米间作对土壤磷组分与作物磷吸收的影响. 应用生态学报, 2024, 35(6): 1583-1589 [3] Cahoon L, Ensign S. Spatial and temporal variability in excessive soil phosphorus levels in eastern North Carolina. Nutrient Cycling in Agroecosystems, 2004, 69: 111-125 [4] 吉庆凯, 王栋, 杨文宝, 等. 长期施磷对玉米-小麦轮作系统作物产量和磷素吸收及土壤磷积累的影响. 应用生态学报, 2021, 32(7): 2469-2476 [5] 黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策. 植物营养与肥料学报, 2017, 23(6): 1480-1493 [6] Barben SA, Hopkins BG, Jolley VD, et al. Phosphorus and zinc interactions in chelator-buffered solution grown russet burbank potato. Journal of Plant Nutrition, 2010, 33: 587-601 [7] Tian JH, Boitt G, Black A, et al. Accumulation and distribution of phosphorus in the soil profile under ferti-lized grazed pasture. Agriculture, Ecosystems and Environment, 2017, 239: 228-235 [8] Moir J, Tiessen H. Characterization of Available P by Sequential Extraction. Boca Raton, FL, USA: CRC Press, 2007 [9] Billa M, Khan M, Bano A, et al. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 2019, 36: 904-916 [10] 信文娟. 不同磷水平下菌根真菌与解磷菌、根瘤菌对紫云英生长影响及其相互作用. 硕士论文. 武汉: 华中农业大学, 2009 [11] Turner BL, Lambers H, Condron LM, et al. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant and Soil, 2013, 367: 225-234 [12] 孟祥坤, 于新, 朱超, 等. 解磷微生物研究与应用进展. 华北农学报, 2018, 33(增刊1): 208-214 [13] Kucey RMN. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin alberta soils. Canadian Journal of Soil Science, 1983, 63: 671-678 [14] 吉俐. 解磷真菌的筛选鉴定及其菌肥的研制与应用. 硕士论文. 贵阳: 贵州大学, 2023 [15] Bao XZ, Lu HF, Zhao JY, et al. Screening and identification of two novel phosphate-solubilizing Pyrenochaetopsis tabarestanensis strains and their role in enhancing phosphorus uptake in rice. Frontiers in Microbiology,2025, 15: 1494859 [16] Xu KL, Lv XY, Yue FX, et al. Effects of phosphate-solubilizing fungus Aspergillus flavus AF-LRH1 on promoting phosphorus solubilization, wheat growth and soil heavy metal remediation. Journal of Environmental Chemical Engineering, 2024, 12: 114357 [17] 乔志伟, 洪坚平, 谢英荷, 等. 一株石灰性土壤强溶磷真菌的分离鉴定及溶磷特性. 应用与环境生物学报, 2013, 19(5): 873-877 [18] 宁琪, 陈林, 李芳, 等. 被孢霉对土壤养分有效性和秸秆降解的影响. 土壤学报, 2022, 59(1): 206-217 [19] Zheng YT, Yu SY, Li YZ, et al. Efficient bioimmobilization of cadmium contamination in phosphate mining wastelands by the phosphate solubilizing fungus Penicillium oxalicum ZP6. Biochemical Engineering Journal, 2022, 187: 108667 [20] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000 [21] Uddling J, Gelang-Alfredsson J, Piikki K, et al. Evalua-ting the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 2007, 91: 37-46 [22] Wu J, Joergensen RG, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction: An automated procedure. Soil Biology and Biochemistry, 1990, 22: 1167-1169 [23] 张丽华, 黄高宝, 张仁陟. 旱作条件下不同覆盖及耕作方式对土壤微生物量磷的影响. 甘肃农业大学学报, 2006, 41(6): 98-101 [24] Mcdowell RW, Condron LM. Chemical nature and potential mobility of phosphorus in fertilized grassland soils. Nutrient Cycling in Agroecosystems, 2000, 57: 225-233 [25] 李孝良, 叶诗瑛. 高磷土壤磷肥施用效果研究. 安徽技术师范学院学报, 2002, 16(4): 37-39 [26] 彭涛涛, 边少锋, 张丽华, 等. 高磷土壤不同施磷量对玉米生长发育及产量的影响. 吉林农业科学, 2015, 40(1): 41-44, 50 [27] 冯固, 张福锁, 李晓林, 等. 丛枝菌根真菌在农业生产中的作用与调控. 土壤学报, 2010, 47(5): 995-1004 [28] 姚金双. 施磷对连作玉米土壤磷组分及产量的影响. 硕士论文. 哈尔滨: 东北农业大学, 2022 [29] Billah M, Khan M, Bano A, et al. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 2019, 36: 904-916 [30] 黄雨轩, 林宇岚, 张林平, 等. AM真菌和无机磷对油茶苗磷吸收和培养土壤磷组分的影响. 林业科学研究, 2022, 35(5): 33-41 [31] Li F, Zhang SQ, Wang Y, et al. Rare fungus, Mortierella capitata, promotes crop growth by stimulating primary metabolisms related genes and reshaping rhizosphere bacterial community. Soil Biology & Biochemistry, 2020, 151: 108017 [32] Li F, Chen L, Redmile-Gordon M, et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil. Land Degradation & Deve-lopment, 2018, 29: 1642-1651 [33] 李金凤, 王晖, 尤业明, 等. 南亚热带人工林树种配置对根际土壤生物有效磷的影响. 应用生态学报, 2024, 35(6): 1492-1500 [34] 方正. 重庆橘园土壤磷素转化及微生物多样性调控效应研究. 硕士论文. 重庆: 西南大学, 2021 [35] 潘虹, 曹翠玲, 林雁冰, 等. 石灰性土壤解磷细菌的鉴定及其对土壤无机磷形态的影响. 西北农林科技大学学报: 自然科学版, 2015, 43(10): 114-122+51 [36] Li YB, Guo LF, Hägg MM, et al. Serratia spp. are responsible for nitrogen fixation fueled by As(III) oxidation, a novel biogeochemical process identified in mine tailings. Environmental Science & Technology, 2022, 56: 2033-2043 [37] Khan AR, Ullah I, Khan AL, et al. Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation. Environmental Science and Pollution Research, 2015, 22: 14032-14042 [38] An XJ, Li NJ, Zhang SL, et al. Integration of proteome and metabolome profiling to reveal heat stress response and tolerance mechanisms of Serratia sp. AXJ-M for the bioremediation of papermaking black liquor. Journal of Hazardous Materials, 2023, 450: 131092 [39] Shahrajabian MH, Sun WL, Cheng Q, et al. The importance of Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum, Sinorhizobium in sustainable agricultural production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49: 12183 [40] Nakai R, Fujisawa T, Nakamura Y, et al. Genome sequence and overview of Oligoflexus tunisiensis Shr3T in the eighth class Oligoflexia of the phylum Proteobacteria. Standards in Genomic Sciences, 2016, 11: 90 [41] Nakai R, Nishijima M, Tazato N, et al. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. International Journal of Systematic and Evolutionary Microbiology, 2014, 64: 3353-3359 [42] Bowman JP, Nichols CM, Gibson JAE, et al. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. International Journal of Systematic and Evolutionary Microbiology, 2003, 53: 1343-1455 [43] Xu Y, Zhang D, Dai LX, et al. Influence of salt stress on growth of spermosphere bacterial communities in different peanut (Arachis hypogaea L.) cultivars. International Journal of Molecular Sciences, 2020, 21: 2131 [44] 胡玉婕, 朱秀玲, 丁延芹, 等. 芽孢杆菌的耐盐促生机制研究进展. 生物技术通报, 2020, 36(9): 64-74 [45] Zhao Q, Wang HQ, Yu ZY, et al. Rhizosphere organic phosphorus fractions of Simon poplar and Mongolian pine plantations in a semiarid sandy land of northeastern China. Journal of Arid Land, 2015, 7: 475-480 |