Chinese Journal of Applied Ecology ›› 2020, Vol. 31 ›› Issue (11): 3842-3850.doi: 10.13287/j.1001-9332.202011.033
Previous Articles Next Articles
HU Wei*, XIANG Jian-hua, XIANG Yan-ci, CHEN Yan
Received:
2020-02-18
Accepted:
2020-08-10
Online:
2020-11-15
Published:
2021-06-10
Contact:
* E-mail: 673152206@qq.com
Supported by:
HU Wei, XIANG Jian-hua, XIANG Yan-ci, CHEN Yan. Effects of nitrogen-doped carbon nanoparticles on bacterial community in paddy rhizosphere soil[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3842-3850.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202011.033
[1] 胡胜亮, 白培康, 孙景, 等. 荧光碳纳米颗粒: 新进展和技术挑战. 化学进展, 2010, 22(suppl.1): 345-351 [Hu S-L, Bai P-K, Sun J, et al. Fluorescent carbon nanoparticles: Recent achievements and technical challenges. Progess in Chemistry, 2010, 22(suppl.1): 345-351] [2] Qian HF , Ke MJ, Qu Q, et al. Ecological effects of single-walled carbon nanotubes on soil microbial communities and soil fertility. Bulletin of Environmental Contamination and Toxicology, 2018, 101: 536-542 [3] 汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响. 植物生理学报, 2017, 53(6): 933-942 [Wang Y-J, Chen R-Y, Liu H-C, et al. Applications of nanomaterials in agriculture and its effects on the growth and development of plants. Plant Physiology Communications, 2017, 53(6): 933-942] [4] 贺涔霖, 高飞, 卢晓霞, 等. 多壁碳纳米管对土壤微生物的生态毒理效应. 生态毒理学报, 2012, 7(2): 155-161 [He C-L, Gao F, Lu X-X, et al. Ecotoxicological effects of multi-wall carbon nanotube on soil microorganisms. Asian Journal of Ecotoxicolog, 2012, 7(2): 155-161] [5] Rahman MM. Nutrient-use and carbon-sequestration efficiencies in soils from different organic wastes in rice and tomato cultivation. Communications in Soil Science and Plant Analysis, 2013, 44: 1457-1471 [6] He F, Wang H, Chen Q, et al. Short-term response of soil enzyme activity and soil respiration to repeated carbon nanotubes exposure. Journal of Soil Contamination, 2015, 24: 250-261 [7] Tong Z, Bischoff M, Nies L, et al. Impact of fullerene (C60) on a soil microbial community. Environmental Science & Technology, 2007, 41: 2985-2991 [8] 黄珊珊, 王茜, 吕丽伟, 等. 高生物相容性氮掺杂碳点的合成及其在生物成像中的应用. 中国药科大学学报, 2017, 48(2): 184-195 [Huang S-S, Wang Q, Lyu L-W, et al. Synthesis of high biocompatible nitrogen-doped carbon dots for staining in bio-imaging. Journal of China Pharmaceutical University, 2017, 48(2): 184-195] [9] 李莉香, 刘永长, 耿新, 等. 氮掺杂碳纳米管的制备及其电化学性能. 物理化学学报, 2011, 27(2): 443-448 [Li L-X, Liu Y-C, Geng X, et al. Synthesis and electrochemical performance of nitrogen-doped carbon nanotubes. Acta Physico-Chimica Sinica, 2011, 27(2): 443-448] [10] Yang Y, Li X, Jiang J, et al. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping. ACS Nano, 2010, 4: 5755-5762 [11] 曲松楠, 刘星元, 申德振. 氮掺杂发光碳纳米点的研究探索. 发光学报, 2014, 35(9): 1019-1026 [Qu S-N, Liu X-Y, Shen D-Z. Studies on nitrogen-dopped carbon nanodots. Chinese Journal of Luminescence, 2014, 35(9): 1019-1026] [12] 胡冰涛, 张龙江, 杨士红, 等. 稻田氮、磷损失与过程监测方法研究进展. 生态与农村环境学报, 2018, 34(9): 788-796 [ Hu B-T, Zhang L-J, Yang S-H, et al. Research advances on process and monitoring methods of nitrogen and phosphorus loss in paddy fields. Journal of Ecology and Rural Environment, 2018, 34(9): 788-796] [13] 胡伟, 向建华, 向言词, 等. 氮掺杂碳纳米粒子施用对稻田氮素径流和渗漏损失的影响. 农业环境科学学报, 2017, 36(7): 1378-1385 [Hu W, Xiang J-H, Xiang Y-C, et al. Effect of nitrogen-doped carbon nanoparticles (N-CNPs) on nitrogen runoff and leakage loss in paddy fields. Journal of Agro-Environment Science, 2017, 36(7): 1378-1385] [14] Powers CM, Gift J, Lehmann GM. Sparking connections: Toward better linkages between research and human health policy: An example with multiwalled carbon nanotubes. Toxicological Sciences, 2014, 141: 6-17 [15] Huang PM, Wang MK, Chiu CY. Soil mineral-organic matter-microbe interactions: Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia, 2005, 49: 609-635 [16] 宋亚娜, 林艳, 陈子强. 氮肥水平对稻田细菌群落及N2O排放的影响. 中国生态农业学报, 2017, 25(9): 1266-1275 [Song Y-N, Lin Y, Chen Z-Q. Effect of nitrogen fertilizer level on bacterial community and N2O emission in paddy soil. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1266-1275] [17] 胡伟, 杨玉兰, 王燕. 氮掺杂碳纳米粒子对土壤氮素转化及油菜苗期生长的影响. 中国土壤与肥料, 2016(4): 108-112 [ Hu W, Yang Y-L, Wang Y. Effects of adding nitrogen-doped carbon nanoparticles (N-CNPs) on nitrogen transformation in soil and on rapeseed growth at seeding stage. Soil and Fertilizer Sciences in China, 2016(4): 108-112] [18] Du Y, Wang TY, Wang CY, et al. Nitrogen fertilizer is a key factor affecting the soil chemical and microbial communities in a Mollsoil. Canadian Journal of Micro-biology, 2019, 65: 510-521 [19] Khodakovskaya MV, Kim BS, Kim JN, et al. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 9: 115-123 [20] Shrestha B, Acosta-Martinez V, Cox SB, et al. An eva-luation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. Journal of Hazardous Materials, 2013, 261: 188-197 [21] Wessén E, Hallin S, Philippot L. Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biology and Biochemistry, 2010, 42: 1759-1765 [22] 李文广, 杨晓晓, 黄春国, 等. 饲料油菜作绿肥对后茬麦田土壤肥力及细菌群落的影响. 中国农业科学, 2019, 52(15): 2664-2677 [Li W-G, Yang X-X, Huang C-G, et al. Effects of rapeseed green manure on soil fertility and bacterial community in dryland wheat field. Scientia Agricultura Sinica, 2019, 52(15): 2664-2677 [23] Liu C, Dong Y, Hou L, et al. Acidobacteria community responses to nitrogen dose and form in Chinese fir plantations in southern China. Current Microbiology, 2017, 74: 396-403 [24] Männistö MK, Tiirola M, Häggblom MM. Bacterial communities in Arctic fields of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiology Ecology, 2007, 59: 452-465 [25] 陈婷婷, 郑平, 胡宝兰. 厌氧氨氧化菌的物种多样性与生态分布. 应用生态学报, 2009, 20(5): 1229-1235 [Chen T-T, Zheng P, Hu B-L. Species diversity and ecological distribution of anaerobic ammonium-oxidizing bacteria. Chinese Journal of Applied Ecology, 2009, 20(5): 1229-1235] [26] Abed RMM, Al Kharusi S, Schramm A, et al. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Micro-biology Ecology, 2010, 72: 418-428 [27] 吴沿友, 张颖, 朱咏莉, 等. 泉州湾河口湿地土壤硝化细菌的数量变化. 地球与环境, 2012, 40(4): 473-478 [Wu Y-Y, Zhang Y, Zhu Y-L, et al. Quantitative change of nitrifying bacteria at Quanzhou Bay estuary wetland. Earth and Environment, 2012, 40(4): 473-478] [28] 梁书诚, 赵敏, 卢磊, 等. 好氧反硝化菌脱氮特性研究进展. 应用生态学报, 2010, 21(6): 1581-1588 [Liang S-C, Zhao M, Lu L, et al. Research advances in denitrogenation characteristics of aerobic denitrifiers. Chinese Journal of Applied Ecology, 2010, 21(6): 1581-1588] [29] Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31: 814-821 [30] Saier MH. Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology, 2000, 146: 1775-1795 [31] Khurana P, Gokhale RS, Mohanty D. Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles. BMC Bioinformatics, 2010, 11: 1471-2105 [32] 李洁琼, 郑世学, 喻子牛, 等. 乙酰辅酶A羧化酶:脂肪酸代谢的关键酶及其基因克隆研究进展. 应用与环境生物学报, 2011, 17(5): 753-758 [ Li J-Q, Zheng S-X, Yu Z-N, et al. Acetyl-coenzyme A carboxy-lase: A key metabolic enzyme of fatty acid and progress of its gene clone. Chinese Journal of Applied & Environmental Biology, 2011, 17(5): 753-758] [33] Konishi N, Saito M, Imagawa F, et al. Cytosolic glutamine synthetase isozymes play redundant roles in ammonium assimilation under low-ammonium conditions in roots of Arabidopsis thaliana. Plant & Cell Physiology, 2018, 59: 601-627 [34] Lea PJ, Azevedo RA. Nitrogen use efficiency. 2. Amino acid metabolism. Annals of Applied Biology, 2007, 151: 269-275 |
[1] | LI Jing, ZHANG Xiaofei, ZHANG Huiwen, WEN Jiaqing, ZHANG Yan, XU Lingling. Effects of salt stress on bacterial community composition and diversity in rhizosphere soil of Bletilla striata [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 219-228. |
[2] | HUANG Qingyang, XIE Lihong, CAO Hongjie, WANG Limin, YANG Fan, WANG Jifeng, LIU Yingnan, NI Hongwei. Effects of bacteria on early-stage litter decomposition in Wudalianchi volcanic forest [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1941-1948. |
[3] | GUO Rong, WU Xudong, WANG Zhanjun, JIANG Qi, YU Hongqian, HE Jing, LIU Wenjuan, MA Kun. Responses of soil bacterial and fungal communities to altered precipitation in a desert steppe [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1500-1508. |
[4] | SHAO Ya-jun, WANG Li-yan, TAN Yun-yan, LENG Peng, WANG Jian-qing, XU Jing-hua, SHI Xiu-zhen. Effects of common afforestation tree species on soil bacterial community and microbial functional guilds in subtropical forests [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 235-241. |
[5] | LIU Zhe, YE Xing-wang, WANG Ji-ping, CHENG Yong-tao, QIAN Long, XIAO Jing-shang, WU Li. Seasonal dynamics of the physicochemical properties of biological crusts exopolysaccharides and the microbial community structure [J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1801-1809. |
[6] | JIN Hai-yang, YUE Jun-qin, YAN Ya-qian, ZHANG De-qi, YANG Cheng, LI Xiang-dong, SHAO Yun-hui, FANG Bao-ting. Soil bacterial communities of different crop rotations and yield of succeeding wheat. [J]. Chinese Journal of Applied Ecology, 2022, 33(11): 2954-2962. |
[7] | TIAN Mao-hui, SHEN Li-dong, LIU Xin, YANG Wang-ting, JIN Jing-hao, YANG Yu-ling, LIU Jia-qi. Spatial and temporal characteristics of community structure of nitrite-dependent anaerobic methane-oxidizing bacteria in paddy soil [J]. Chinese Journal of Applied Ecology, 2022, 33(1): 239-247. |
[8] | REN Hai-ying, XU Qiao, QI Xing-jiang, YU Zhe-ping, ZHENG Xi-liang, ZHANG Shu-wen, WANG Zhen-shuo. Differences of bacterial and fungal communities in the tree and rhizosphere of the healthy and twig blight-diseased bayberry [J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3107-3118. |
[9] | LI Xin-yue, LI Bing, MO Tai-xiang, WANG Chang-quan, WAN Yi-yuan, CHEN Xie-chang, LI He-ming. Effects of long-term straw returning on distribution of aggregates and nitrogen, phosphorus, and potassium in paddy [J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3257-3266. |
[10] | ZHANG Zhong-fu, YU Qing-guo, WANG Hang, LIU Hui-hui, ZHAO Ya-chuan, XIE Xue-yang, ZHANG Meng, GENG Wei. Effects of plant community and soil properties on soil bacterial community in Bitahai Wetland, Southwest China [J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2199-2208. |
[11] | CHEN Rui-rui, ZHANG Jian-wei, DONG Yang, LIN Xian-gui, FENG You-zhi. Effects of salinity on soil bacterial diversity and assembly processes in coastal soils. [J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1816-1824. |
[12] | LIANG Yan, MING An-gang, HE You-jun, LUO Ying-hua, TAN Ling, QIN Lin. Structure and function of soil bacterial communities in the monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix in southern subtropical China [J]. Chinese Journal of Applied Ecology, 2021, 32(3): 878-886. |
[13] | SONG Jia, HUANG Jing, GAO Ju-sheng, WANG Ya-nan, WU Cui-xia, BAI Ling-yu, ZENG Xi-bai. Effects of green manure planted in winter and straw returning on soil aggregates and organic matter functional groups in double cropping rice area [J]. Chinese Journal of Applied Ecology, 2021, 32(2): 564-570. |
[14] | FAN Jin, LI Shi-yao, DU Ya-xian, WANG Rong-rong, YU Hai-long, HUANG Ju-ying. Differences of bacterial communities in different biological soil crusts around thermal power plant and their influencing factors [J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4107-4118. |
[15] | PU Jia-hui, JIANG Nan, JUAN Ying-hua, CHEN Li-jun. Effects of freeze-thaw on dissolved nitrogen pool, nitrogen transformation processes and diversity of bacterial community in temperate soils [J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2893-2902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||