[1] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press, 2021: 4 [2] World Meteorological Organization (WMO). Global Greenhouse Gas Bulletin. Geneva: World Meteorological Organization Press, 2021: 3 [3] Batson J, Noe GB, Hupp CR, et al. Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland. Journal of Geophysical Research: Biogeosciences, 2015, 120: 77-95 [4] Schaller C, Hofer B, Klemm O. Greenhouse gas exchange of a NW German peatland, 18 years after rewetting. Journal of Geophysical Research: Biogeosciences, 2022, 127: e2020JG005960 [5] Mitsch WJ, Bernal B, Nahlik AM, et al. Wetlands, carbon, and climate change. Landscape Ecology, 2013, 28: 583-597 [6] Whiting GJ, Chanton JP. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B: Chemical and Physical Meteorology, 2016, 53: 521-528 [7] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report. Cambridge: Cambridge University Press, 2007: 9 [8] Ballantine KA, Anderson TR, Pierce EA, et al. Restoration of denitrification in agricultural wetlands. Ecological Engineering, 2017, 106: 570-577 [9] Zhao RF, Zhang XY, Zhang LH, et al. Plant diversity and soil properties at different wetland restoration stages along a major river in the arid northwest of China. Wetlands, 2021, 41: 1-10 [10] 安岩, 顾佰和, 王毅, 等. 基于自然的解决方案: 中国应对气候变化领域的政策进展、问题与对策. 气候变化研究进展, 2021, 17(2): 184-194 [11] 侯鹏, 高吉喜, 万华伟, 等. 陆地生态系统保护修复成效评估研究进展及主要科学问题. 环境生态学, 2021, 3(4): 1-7 [12] Kandel TP, Laerke PE, Hoffmann CC, et al. Complete annual CO2, CH4, and N2O balance of a temperate riparian wetland 12 years after rewetting. Ecological Engineering, 2019, 127: 527-535 [13] 张天宝, 刘晓辉, 安雨, 等. 室内模拟水位下退耕还湿地表层土壤温室气体排放研究. 湿地科学, 2019, 17(6): 705-712 [14] Bartolucci NN, Anderson TR, Ballantine KA. Restoration of retired agricultural land to wetland mitigates greenhouse gas emissions. Restoration Ecology, 2020, 29: e13314 [15] Lee SC, Christen A, Blanc AT, et al. Annual greenhouse gas budget for a bog ecosystem undergoing restoration by rewetting. Biogeosciences, 2017, 14: 2799-2814 [16] Lestari I, Murdiyarso D, Taufik M. Rewetting tropical peatlands reduced net greenhouse gas emissions in Riau Province, Indonesia. Forests, 2022, 13: 10.3390/F13040505 [17] 惠若男. 河岸湿地土壤二氧化碳排放规律及其影响因素研究. 硕士论文. 哈尔滨: 东北林业大学, 2014 [18] Wang Z, Song K, Ma W, et al. Loss and fragmentation of marshes in the Sanjiang Plain, Northeast China, 1954-2005. Wetlands, 2011, 31: 945-954 [19] Liu HX, Gao CY, Wang GP. Understand the resilience and regime shift of the wetland ecosystem after human disturbances. Science of the Total Environment, 2018, 643: 1031-1040 [20] 王奎博, 唐永强, 安硕, 等. 基于GEE的三江平原湿地覆盖变化及驱动力分析. 现代信息科技, 2021, 5(23): 51-54 [21] 赵琬婧, 李海兴, 焦健, 等. 黑龙江三江平原不同退耕年限湿地土壤持水量变化. 湿地科学与管理, 2020, 16(4): 54-57 [22] Jin X, Sun XX, Li HX, et al. Changes of plant species diversity and biomass with reclaimed marshes restoration. Journal of Forestry Research, 2021, 32: 133-142 [23] Song CC, Xu XF, Tian HQ, et al. Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glo-bal Change Biology, 2009, 15: 692-705 [24] 宋长春, 王毅勇, 王跃思, 等. 人类活动影响下淡水沼泽湿地温室气体排放变化. 地理科学, 2006, 26(1): 82-86 [25] Yamulki S, Anderson R, Peace A, et al. Soil CO2, CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: Implications for drainage and restoration. Biogeosciences, 2013, 10: 1051-1065 [26] Wright CM, Blaser AC, Treitz PM, et al. Spatial variability in carbon dioxide exchange processes within wet sedge meadows in the Canadian High Arctic. Advances in Polar Science, 2021, 32: 1-19 [27] 韩士杰, 董云社, 蔡祖聪, 等. 中国陆地生态系统碳循环的生物地球化学过程. 北京: 科学出版社, 2008: 437 [28] 白炜, 奚晶阳, 王根绪. 短期增温与施氮对青藏高原高寒沼泽草甸生态系统CO2排放的影响. 生态学杂志, 2019, 38(4): 927-936 [29] 万忠梅. 水位对小叶章湿地CO2、CH4排放及土壤微生物活性的影响. 生态环境学报, 2013, 22(3): 465-468 [30] 何方杰, 韩辉邦, 马学谦, 等. 隆宝滩保护区不同生态系统CH4和CO2通量差异及其影响因素. 生态学杂志, 2020, 39(9): 2821-2831 [31] 梁东哲, 赵雨森, 辛颖. 大兴安岭重度火烧迹地天然次生林土壤温室气体通量及其影响因子. 应用生态学报, 2019, 30(3): 777-784 [32] 李海防, 夏汉平, 熊艳梅, 等. 土壤温室气体产生与排放影响因素研究进展. 生态环境, 2007, 16(6): 1781-1788 [33] 陈雅文, 韩广轩, 赵明亮, 等. 基于DNDC模型评估水位变化对滨海湿地净生态系统CO2交换的影响. 生态环境学报, 2021, 30(2): 254-263 [34] 周文昌, 崔丽娟, 王义飞, 等. 若尔盖高原沼泽湿地CO2排放时空变化特征. 生态学报, 2021, 41(7): 2652-2662 [35] Han GX, Chu X, Xing Q, et al. Effects of episodic floo-ding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta. Journal of Geophysical Research: Biogeosciences, 2015, 120: 1506-1520 [36] Chen LZ, Wang WQ, Lin P. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater. Environmental and Experimental Botany, 2004, 54: 256-266 [37] Sairam RK, Kumutha D, Ezhilmathi K, et al. Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum, 2008, 52: 401-412 [38] Han GX, Luo YQ, Li DJ, et al. Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland. Soil Biology & Biochemistry, 2014, 68: 85-94 [39] 刘凯. 辽河口湿地CO2排放及其盐分的影响. 硕士论文. 沈阳: 沈阳大学, 2018 [40] 李典鹏. 干旱区盐湖沉积物有机碳矿化对增温和氮沉降的响应. 硕士论文. 乌鲁木齐: 新疆农业大学, 2020 [41] Setia R, Marschner P, Baldock J, et al. Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. Soil Biology & Biochemistry, 2011, 43: 667-674 [42] Sun Bf, Zhao H, Lü YZ, et al. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands. Journal of Integrative Agriculture, 2016, 15: 440-450 [43] 郝小雨, 王晓军, 高洪生, 等. 松嫩平原不同秸秆还田方式下农田温室气体排放及碳足迹估算. 生态环境学报, 2022, 31(2): 318-325 [44] Ward ND, Bianchi TS, Martin JB, et al. Pathways for methane emissions and oxidation that influence the carbon balance of a subtropical cypress swamp. Frontiers in Earth Science, 2020, 8: 573357 [45] Keane JB, Toet S, Ineson P, et al. Carbon dioxide and methane flux response and recovery from drought in a hemiboreal ombrotrophic fen. Frontiers in Environmental Science, 2021, 8: 562401 [46] 董玉红, 欧阳竹. 有机肥对农田土壤二氧化碳和甲烷通量的影响. 应用生态学报, 2005, 16(7): 1303-1307 [47] 吴玉源. 三峡水库消落带新生湿地温室气体通量评估及碳汇初步研究. 硕士论文. 重庆: 重庆大学, 2012 [48] Kludze HK, DeLaune RD, Patrick WH. Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal, 1993, 57: 386-391 [49] 杨平, 仝川. LUCC对湿地碳储量及碳排放的影响. 湿地科学与管理, 2011, 7(3): 56-59 [50] 肖冬梅, 王淼, 姬兰柱, 等. 长白山阔叶红松林土壤氮化亚氮和甲烷的通量研究. 应用生态学报, 2004, 15(10): 1855-1859 [51] 张耀全, 邓长芳, 罗珠珠, 等. 黄土高原不同种植年限苜蓿地土壤温室气体排放特征. 草业科学, 2020, 37(1): 30-40 [52] Dinsmore KJ, Skiba UM, Billett MF, et al. Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant and Soil, 2009, 318: 229-242 [53] 赵明亮. 淹水梯度对黄河三角洲芦苇湿地生态系统碳交换的影响. 博士论文. 重庆: 西南大学, 2021 [54] 王怡萌, 段磊磊, 陈聪, 等. 不同水位管理对恢复泥炭地土壤CO2、CH4排放影响研究. 生态学报, 2023, 43(11): doi: 10.5846/stxb202111013067 [55] 白雪, 农梦玲, 龙鹏宇, 等. 蔗田滴灌施肥土壤甲烷排放通量与活性有机碳含量的关系. 华南农业大学学报, 2020, 41(3): 31-37 [56] Davidson EA, Verchot LV, Cattanio JH, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 2000, 48: 53-69 [57] 陈全胜, 李凌浩, 韩兴国, 等. 水分对土壤呼吸的影响及机理. 生态学报, 2003, 23(5): 972-978 [58] 王春光. 退耕对三江平原沼泽土壤有机碳恢复的影响机制研究. 博士论文. 哈尔滨: 东北林业大学, 2022 [59] Vanselow-Algan M, Schmidt SR, Greven M, et al. High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences, 2015, 12: 2809-2842 [60] 郭佳, 晁碧霄, 张颖, 等. 西洞庭湖季节性淹水和植被类型对温室气体排放通量的影响. 湖泊科学, 2020, 32(3): 726-734 [61] 黄国宏, 李玉祥, 陈冠雄, 等. 环境因素对芦苇湿地CH4排放的影响. 环境科学, 2001, 22(1): 1-5 |