[1] Zhang BC, Zhou Y, Chen P, et al. Maize-legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. Journal of Integrative Agriculture, 2022, 21: 1755-1771 [2] Gong XW, Dang K, Lv SM, et al. Interactions and water-use efficiency of intercropped proso millet and mung bean. European Journal of Agronomy, 2020, 115: 126034 [3] 吴开贤, 安瞳昕, 范志伟, 等. 玉米与马铃薯的间作优势和种间关系对氮投入的响应. 植物营养与肥料学报, 2012, 18(4): 1006-1012 [4] McCormack ML, Adams TS, Smithwick EAH, et al. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology, 2014, 95: 2224-2235 [5] Dunbabin VM, Postma JA, Schnepf A, et al. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function. Plant and Soil, 2013, 372: 93-124 [6] Falik O, Reides P, Gersani M, et al. Self/non-self discrimination in roots. Journal of Ecology, 2003, 91: 525-531 [7] Xia HY, Zhao JH, Sun JH, et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013, 150: 52-62 [8] Fan FL, Zhang FS, Song Y, et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil, 2006, 283: 275-286 [9] 汪雪, 刘晓静, 赵雅姣, 等. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究. 草业学报, 2021, 30(8): 73-85 [10] 尹元萍, 张雅琼, 申毓晗, 等. 玉米/大豆间作中大豆根系生长及氮磷养分吸收的特点. 西南农业学报, 2014, 27(6): 2305-2310 [11] Sun BR, Gao YZ, Yang HJ, et al. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant and Soil, 2018, 439: 145-161 [12] 俞霞. 红壤旱地甜玉米‖大豆间作系统作物产量、碳氮吸收累积和土壤养分的变化特征研究. 硕士论文. 南昌: 江西农业大学, 2021 [13] 詹柳琪, 郭陞垚, 黄佳华, 等. 花生玉米间作对土壤酶活性、养分及作物产量的影响. 福建农业学报, 2022, 37(8): 985-994 [14] 张恩和, 黄宝高. 间套种植复合群体根系时空分布特征. 应用生态学报, 2003, 14(8): 1301-1304 [15] 张劲松, 孟平, 尹昌君, 等. 苹果-小麦复合系统中作物根系时空分布特征. 林业科学研究, 2002, 15(5): 537-541 [16] 宋日, 刘利, 吴春胜, 等. 根系生长空间对玉米生长和养分吸收的影响. 西北农林科技大学学报: 自然科学版, 2009, 37(6): 58-64 [17] 刘丽娟, 魏云霞, 黄洁, 等. 木薯间作玉米共生期间的作物生长及根系互作. 南方农业学报, 2021, 52(3): 732-742 [18] 代元帅, 鲁为华, 杨涛, 等. 北疆杨树‖苜蓿复合系统中根系分布特征及产量. 干旱地区农业研究, 2020, 38(6): 141-151 [19] 杨涛, 鲁为华, 李斌, 等. 新疆杨树-紫花苜蓿林草复合系统中根系分布特征及生产力. 干旱地区农业研究, 2020, 38(2): 116-124, 134 [20] 马倩, 闫启, 张正社, 等. 紫花苜蓿CCoAOMT基因家族的鉴定、进化及表达分析. 草业学报, 2021, 30(11): 144-156 [21] 李刚, 郑敏娜, 李荫藩. 饲用燕麦品种在晋北农牧交错区的生产性能和营养价值研究. 中国农业科技导报, 2021, 23(12): 42-53 [22] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [23] Li L, Li SM, Sun JH, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the Natio-nal Academy of Sciences of the United States of America, 2007, 104: 11192-11196 [24] 李玉英, 胡汉升, 程序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630 [25] 刘璐. 玉米/紫花苜蓿间作体系根系构型与氮素吸收利用的研究. 硕士论文. 长春: 东北师范大学, 2017 [26] Wang YF, Qin YZ, Chai Q, et al. Interspecies interactions in relation to root distribution across the rooting profile in wheat-maize intercropping under different plant densities. Frontiers in Plant Science, 2018, 9: 483 [27] 张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23(6): 1547-1555 [28] 唐秀梅, 蒙秀珍, 蒋菁, 等. 甘蔗间作花生对不同耕层土壤微生态的影响. 中国油料作物学报, 2020, 42(5): 713-722 [29] 赵雅姣, 刘晓静, 吴勇, 等. 西北半干旱区紫花苜蓿-小黑麦间作对根际土壤养分和细菌群落的影响. 应用生态学报, 2020, 31(5): 1645-1652 [30] Wang XC, Deng XY, Pu T, et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 2017, 204: 12-22 [31] 章家恩, 高爱霞, 徐华勤, 等. 玉米/花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20(7): 1597-1602 [32] 李冬梅. 小麦/苜蓿间作的土壤微生物多样性和种间促进作用研究. 硕士论文. 哈尔滨: 东北农业大学, 2015 [33] 焦念元, 汪江涛, 尹飞, 等. 施用乙烯利和磷肥对玉米/花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016, 22(6): 1477-1484 [34] 王琼珊, 张教海, 夏松波, 等. 棉花间作种植模式研究进展. 湖北农业科学, 2021, 60(增刊2): 1-4 |