[1] 张卫明, 顾龚平, 史劲松. 药用植物资源可持续发展研究初探. 现代中药研究与实践, 2004(5): 5-8 [2] 周繇, 于俊林, 张本刚, 等. 长白山区药用植物资源及其多样性研究. 北京林业大学学报, 2007(3): 52-59 [3] 程海涛, 贝雷, 梁启超, 等. 小兴安岭野生药用植物资源调查与评价. 中国农学通报, 2012, 28(25): 93-96 [4] 万修福, 杨野, 康传志, 等. 林草中药材生态种植现状分析及展望. 中国现代中药, 2021, 23(8): 1311-1318 [5] 马增旺, 赵广智, 邢存旺. 山区发展林下药材的前景、问题与对策. 林业实用技术, 2012(11): 87-88 [6] 汪贵斌, 郭旭琴, 常丽, 等. 温度和土壤水分对银杏叶黄酮类化合物积累的影响. 应用生态学报, 2013, 24(11): 3077-3083 [7] Devlin PF, Christie JM, Terry MJ. Many hands make light work. Journal of Experimental Botany, 2007, 58: 3071-3077 [8] Zhang S, Zhang L, Zou H, et al. Effects of light on secon-dary metabolite biosynthesis in medicinal plants. Frontiers in Plant Science, 2021, 12, DOI: 10.3389/fpls.2021.781236 [9] Zhen S, Bugbee B. Steady-state stomatal responses of C3 and C4 species to blue light fraction: Interactions with CO2 concentration. Plant, Cell & Environment, 2020, 43: 3020-3032 [10] Razzak A, Ranade SS, Strand Å, et al. Differential response of Scots pine seedlings to variable intensity and ratio of red and far-red light. Plant, Cell & Environment, 2017, 40: 1332-1340 [11] Wang Y, Folta KM. Contributions of green light to plant growth and development. American Journal of Botany, 2013, 100: 70-78 [12] Casal JJ. Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology, 2013, 64: 403-427 [13] Verdaguer D, Jansen M, Llorens L, et al. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Science, 2017, 255: 72-81 [14] 高勇, 李清明, 刘彬彬, 等. 不同光质配比对紫叶生菜光合特性和品质的影响. 应用生态学报, 2018, 29(11): 3649-3657 [15] 马靖然, 王亚楠, 常璐, 等. 冠层光谱组成对红松和蒙古栎幼苗生长和光合荧光特性的影响. 应用生态学报, 2022, 33(9): 2314-2320 [16] Deng J, Fang S, Fang X, et al. Forest understory vegetation study: Current status and future trends. Forestry Research, 2023, 3: https://doi.org/10.48130/FR-2023-0006 [17] 赵燕波, 张丹桔, 张健, 等. 不同郁闭度马尾松人工林林下植物多样性. 应用与环境生物学报, 2016, 22(6): 1048-1054 [18] 阮晓佳, 郜玉钢, 赵岩, 等. 不同林型、产地、参龄及坡向对林下参20种单体皂苷含量的影响. 食品科学, 2018, 39(24): 195-202 [19] 盛炜彤. 不同密度杉木人工林林下植被发育与演替的定位研究. 林业科学研究, 2001(5): 463-471 [20] Hogewoning SW, Trouwborst G, Maljaars H, et al. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 2010, 61: 3107-3117 [21] Rai N, Neugart S, Yan Y, et al. How do cryptochromes and UVR8 interact in natural and simulated sunlight? Journal of Experimental Botany, 2019, 70: 4975-4990 [22] 潘俊倩, 佟曦然, 郭宝林. 光对植物黄酮类化合物的影响研究进展. 中国中药杂志, 2016, 41(21): 3897-3903 [23] Hartikainen SM, Pieriste M, Lassila J, et al. Seasonal patterns in spectral irradiance and leaf UV-A absorbance under forest canopies. Frontiers in Plant Science, 2020, 10, DOI: 10.3389/fpls.2019.01762 [24] Poorter H, Remkes C. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 1990, 83: 553-559 [25] 高晓霞, 徐荣, 陈君, 等. 不同种质黄芩中黄酮类成分测定及分析. 中国现代中药, 2016, 18(3): 343-352 [26] Ying L, Chenqian K, Elias K, et al. Red/blue light ratios induce morphology and physiology alterations differently in cucumber and tomato. Scientia Horticulturae, 2021, 281, DOI: 10.1016/j.scienta.2021.109995 [27] Zhang Y, Kaiser E, Zhang Y, et al. Red/blue light ratio strongly affects steady-state photosynthesis, but hardly affects photosynthetic induction in tomato (Solanum lycopersicum). Physiology Plantarum, 2019, 167: 144-158 [28] 任毛飞, 毛桂玲, 刘善振, 等. 光质对植物生长发育、光合作用和碳氮代谢的影响研究进展. 植物生理学报, 2023, 59(7): 1211-1228 [29] Paradiso R, Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation, 2022, 41: 742-780 [30] Kataria S, Guruprasad KN, Ahuja S, et al. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants. Journal of Photochemistry and Photobiology B: Biology, 2013, 127: 140-152 [31] Bernal M, Verdaguer D, Badosa J, et al. Effects of enhanced UV radiation and water availability on perfor-mance, biomass production and photoprotective mechanisms of Laurus nobilis seedlings. Environmental & Experimental Botany, 2015, 109: 264-275 [32] Wang QW, Robson TM, Pieristè M, et al. Testing trait plasticity over the range of spectral composition of sunlight in forb species differing in shade tolerance. Journal of Ecology, 2020, 108: 1923-1940 [33] Newsham KK, Greenslade PD, McLeod AR. Effects of elevated ultraviolet radiation on Quercus robur and its insect and ectomycorrhizal associates. Global Change Biology, 1999, 5: 881-890 [34] 张鹏飞, 刘亚令, 梁建萍, 等. 不同光质处理对蒙古黄芪幼苗根系生物量及有效成分积累的影响. 草地学报, 2015, 23(4): 838-843 [35] Kong SG, Wada M. Molecular basis of chloroplast photorelocation movement. Journal of Plant Research, 2016, 129: 159-166 |