[1] Lü FC, Song YK, Yan XD. Evaluating carbon sink potential of forest ecosystems under different climate change scenarios in Yunnan, Southwest China. Remote Sensing, 2023, 15: 1442 [2] Forzieri G, Dakos V, McDowell NG, et al. Emerging signals of declining forest resilience under climate change. Nature, 2022, 608: 534-539 [3] 中国气象局国家气候中心. 2023年中国气候公报. 北京: 中国气象局, 2024 [4] 张存杰, 任玉玉, 曹丽娟, 等. 近60年中国干湿气候变化特征及其未来趋势预估. 气候变化研究快报, 2021, 10(6): 728-741 [5] Xu CG, McDowell NG, Fisher RA, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 2019, 9: 948-953 [6] 李明, 胡炜霞, 王贵文, 等. 基于Copula函数的中国东部季风区干旱风险研究. 地理科学, 2019, 39(3): 506-515 [7] Zhang XX, Gu XH, Slater LJ, et al. Amplification of coupled hot-dry extremes over eastern monsoon China. Earth’s Future, 2023, 11: e2023EF003604 [8] 杨思遥, 孟丹, 李小娟, 等. 华北地区2001—2014年植被变化对SPEI气象干旱指数多尺度的响应. 生态学报, 2018, 38(3): 1028-1039 [9] Nguyen QT, Govind A, Le MH, et al. Spatiotemporal characterization of droughts and vegetation response in Northwest Africa from 1981 to 2020. The Egyptian Journal of Remote Sensing and Space Sciences, 2023, 26: 393-401 [10] Xu HJ, Wang XP, Zhao CY, et al. Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014. Agricultural and Forest Meteorology, 2018, 262: 1-13 [11] 王亚林, 丁忆, 胡艳, 等. 中国灌木生态系统的干旱化趋势及其对植被生长的影响. 生态学报, 2019, 39(6): 2054-2062 [12] 曲学斌, 杨淑香, 王彦平, 等. 2000—2017年内蒙古地区VCI对不同时间尺度SPEI的响应. 中国农学通报, 2020, 36(26): 106-111 [13] 王永琳, 迟永刚, 周蕾. 2007—2018年中国陆地植被总初级生产力与日光诱导叶绿素荧光的时空格局及其气候调控. 遥感技术与应用, 2022, 37(3): 692-701 [14] 袁艳斌, 张城芳, 黄鹏, 等. 基于日光诱导叶绿素荧光的陆地总初级生产力估算. 农业机械学报, 2022, 53(4): 183-191 [15] Wang XR, Qiu B, Li WK, et al. Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence. Science of the Total Environment, 2019, 693: 133627 [16] 马慧鹏. 基于SIF及多源遥感指数的多尺度林木干旱胁迫监测. 硕士论文. 南京: 南京林业大学, 2023 [17] Qiu RN, Li X, Han G, et al. Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agricultural and Forest Meteorology, 2022, 323: 109038 [18] 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用遥感监测数据集(CNLUCC). 北京: 资源环境科学数据注册与出版系统, 2018 [19] 国家统计局, 生态环境部. 中国环境统计年鉴(2020). 北京: 中国统计出版社, 2021 [20] Li X, Xiao J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sensing, 2019, 11: 517 [21] Gebrechorkos SH, Peng J, Dyer E, et al. Global high-resolution drought indices for 1981-2022. Earth System Science Data, 2023, 15: 5449-5466 [22] Vicente-Serrano SM, Begueria S, Lopez-Moreno JI. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 2010, 23: 1696-1718 [23] 岳慧欣, 何延波, 刘崇怀, 等. 葡萄主产区干旱时空分布特征. 干旱地区农业研究, 2023, 41(1): 201-211 [24] Ding YB, Wang FZ, Mu Q, et al. Estimating land use/land cover change impacts on vegetation response to drought under ‘Grain for Green’ in the Loess Plateau. Land Degradation & Development, 2021, 32: 5083-5098 [25] 齐晓雯, 苗晨, 王鹤松. 基于日光诱导叶绿素荧光探测植被光合对气象干旱的响应. 中国农业气象, 2023, 44(2): 133-143 [26] 陈兰兰, 王丽, 吴亚娟, 等. 植物响应干旱胁迫的分子和微生态机制 [EB/OL]. (2023-04-07) [2023-04-07]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20230406.1634.006.html [27] Zhang J, Chen SZ, Wu ZF, et al. Review of vegetation phenology trends in China in a changing climate. Progress in Physical Geography: Earth and Environment, 2022, 46: 829-845 [28] Li YQ, Shi FZ, Li XY, et al. Divergent roles of deep soil water uptake in seasonal tree growth under natural drought events in North China. Agricultural and Forest Meteorology, 2022, 324: 109102 [29] 李明, 王贵文, 柴旭荣, 等. 基于空间聚类的中国东北气候分区及其气象干旱时间变化特征. 自然资源学报, 2019, 34(8): 1682-1693 [30] Zhang Q, Kong DD, Singh VP, et al. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Global and Planetary Change, 2017, 152: 1-11 [31] 王一帆, 徐涵秋. 利用MODIS EVI时间序列数据分析福建省植被变化(2000—2017年). 遥感技术与应用, 2020, 35(1): 245-254 [32] 曹乐瑶, 周涛, 罗惠, 等. 森林覆盖率在森林生长对气候干旱响应上的调节作用. 北京师范大学学报:自然科学版, 2019, 55(2): 240-247 [33] Li JM, Yu PT, Wan YF, et al. The differential responses of tree transpiration to seasonal drought among competitive pressures in a larch plantation of northwest China. Agricultural and Forest Meteorology, 2023, 336: 109468 [34] Qi GZ, Bai HY, Zhao T, et al. Sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics on the northern and southern slopes of the Qinling Mountains in Shaanxi Province. Journal of Geographical Sciences, 2021, 31: 785-801 [35] 李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 2021, 45(10): 1154-1172 [36] Huang CS, Xu Y, Zang RG. Environment correlates of tree functional diversity with different leaf habits across subtropical evergreen broadleaved forests. Journal of Vegetation Science, 2023, 34: e13183 [37] Jiang LL, Liu WL, Liu B, et al. Monitoring vegetation sensitivity to drought events in China. Science of the Total Environment, 2023, 893: 164917 [38] Huang HD, Yang XP, Zheng ML, et al. An ancestral role for 3-KETOACYL-COA SYNTHASE3 as a negative regulator of plant cuticular wax synthesis. The Plant Cell, 2023, 35: 2251-2270 [39] 荆烁, 孙慧珍. 东北东部山区主要树种枝条及其组分水力特征. 南京林业大学学报, 2021, 45(4): 159-166 [40] Liu G, Liu HY, Yin Y. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environmental Research Letters, 2013, 8: 279-288 [41] Li XY, Piao SL, Wang K, et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology & Evolution, 2020, 4: 1075-1083 [42] Liao JY, Luo QQ, Hu A, et al. Soil moisture-atmosphere feedback dominates land N2O nitrification emissions and denitrification reduction. Global Change Bio-logy, 2022, 28: 6404-6418 [43] Li CJ, Fu BJ, Wang S. et al. Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2021, 2: 858-873 [44] Hammond WM, Williams AP, Abatzoglou JT, et al. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 2022, 13: 1761 [45] Liu ZY, Chen L, Smith NG, et al. Global divergent responses of primary productivity to water, energy, and CO2. Environmental Research Letters, 2019, 14: 124044 [46] Dannenberg MP, Yan D, Barnes ML, et al. Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 US Southwest hot drought. Global Change Biology, 2022, 28: 4794-4806 [47] Sun SB, Du WL, Song ZL, et al. Response of gross primary productivity to drought time-scales across China. Biogeosciences, 2021, 126: e20220JG005953 |