[1] Tian JX, Ni T, Miao Z, et al. Effects of biotic and abio-tic factors on ecosystem multifunctionality of plantations. Ecological Processes, 2024, 13: 44 [2] 于江波, 及利, 刘月, 等. 目标树经营对兴安落叶松人工林土壤胞外酶的影响. 中南林业科技大学学报, 2021, 41(12): 44-52 [3] Hassan TF, Awais S, Wang XH, et al. Perspectives of plantation forests in the sustainable forest development of China. iForest-Biogeosciences and Forestry, 2021, 14: 166-174 [4] 刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营. 生态学报, 2018, 38(1): 1-10 [5] 李艳茹, 赵鹏, 黄永辉, 等. 目标树经营对华北落叶松人工林生长及物种多样性的影响. 东北林业大学学报, 2022, 50(5): 20-25 [6] 尹必然, 向涌旗, 吕倩, 等. 目标树经营对马尾松人工林林下更新的影响. 应用生态学报, 2023, 34(8): 2047-2054 [7] 黄晓霞, 尤美子, 徐伟涛, 等. 目标树经营对杉木人工林林分空间结构的影响. 森林与环境学报, 2022, 42(2): 131-140 [8] Huang MZ, Hu TX, Wang JY, et al. Effects of biochar on soil carbon pool stability in the Dahurian larch (Larix gmelinii) forest are regulated by the dominant soil microbial ecological strategy. Science of the Total Environment, 2024, 951: 175725 [9] Kardol P, Cornips NJ, Putten WH, et al. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecological Monographs, 2007, 35: 147-162 [10] 查满丽, 李帅军, 王翠娟, 等. 亚热带米槠天然林土壤性质和真菌群落对降雨减少的响应. 应用生态学报, 2025, 36(5): 1380-1386 [11] Lisiane S, Rodrigo FR, Leonardo AM, et al. Contribution of enzymes to soil quality and the evolution of research in Brazil. Revista Brasileira De Ciencia Do Solo, 2021, 45: e0210109 [12] Xu HW, Qu Q, Li GW, et al. Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation. Soil Biology & Biochemistry, 2022, 170: 108714 [13] Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 2014, 5: 219 [14] Williams RJ, Howe A, Hofmockel KS, et al. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Frontiers in Microbiology, 2014, 5: 358 [15] Ma B, Wang YL, Ye SD, et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome, 2020, 8: 82 [16] 孙玉军, 张俊, 韩爱惠, 等. 兴安落叶松(Larix gmelinii)幼中龄林的生物量与碳汇功能. 生态学报, 2007, 27(5): 1756-1762 [17] Zhou LL, Cai LP, He ZM, et al. Thinning increases understory diversity and biomass, and improves soil pro-perties without decreasing growth of Chinese fir in southern China. Environmental Science and Pollution Research, 2016, 23: 24135-24150 [18] 刘少华, 赵敏, 王亚娟, 等. 黄土丘陵区林分密度对人工刺槐林土壤理化性质及酶活性影响. 水土保持研究, 2024, 31(5): 123-129 [19] 艾灵, 吴福忠, 樊雪波, 等. 米槠和杉木人工林土壤酶活性和酶化学计量特征对凋落物输入的短期响应. 应用生态学报, 2024, 35(3): 631-638 [20] Zhang H, Ying BB, Hu YJ, et al. Response of soil respiration to thinning is altered by thinning residue treatment in Cunninghamia lanceolata plantations. Agricultural and Forest Meteorology, 2022, 324: 109089 [21] 李媛媛, 徐婷婷, 艾喆, 等. 半干旱区锦鸡儿属植物根际土壤真菌群落多样性及驱动因素. 应用生态学报, 2021, 32(12): 4289-4297 [22] 陈雅轩, 张彧璠, 王佳乐, 等. 不同林龄华北落叶松土壤酶活性和碳氮磷化学计量变化. 生态学报, 2025, 45(1): 25-41 [23] 张冠华, 易亮, 孙宝洋, 等. 亚热带苔藓结皮对土壤-微生物-胞外酶化学计量特征的影响. 应用生态学报, 2022, 33(7): 1791-1800 [24] 沈阳, 李晓英, 蔡慧颖, 等. 林火干扰后大兴安岭多年冻土区土壤胞外酶活性变化特征及其影响因素. 应用生态学报, 2025, 36(2): 497-503 [25] Duckworth CMS, Cresser MS. Factors influencing nitrogen retention in forest soils. Environmental Pollution, 1991, 72: 1-21 [26] 李婷, 葛安辉, 孙志梅, 等. 山药不同施肥管理下土壤碳氮养分和微生物群落分异特征. 农业环境科学学报, 2025, 44(1): 73-84 [27] 张雅琪, 陈林, 庞丹波, 等. 土壤微生物群落对枯落物输入的响应. 应用生态学报, 2022, 33(11): 2943-2953 [28] Li XL, Qu ZL, Zhang YM, et al. Soil fungal community and potential function in different forest ecosystems. Diversity, 2022, 14: 520 [29] Xie L, Yin C. Seasonal variations of soil fungal diversity and communities in subalpine coniferous and broadleaved forests. Science of the Total Environment, 2022, 846: 157409 [30] 申方圆. 寒温带森林火后更新方式对土壤呼吸和微生物群落特征的影响. 博士论文. 哈尔滨: 东北林业大学, 2024 [31] Prescott C, Blevins L, Staley C. Litter decomposition in B.C. forests: Controlling factors and influences of fores-try activities. Journal of Ecosystems and Management, 2005, 5: 44-57 [32] 陈历睿, 林佳妮, 沈蓉, 等. 三峡库区马尾松林土壤真菌群落特征及影响因素. 应用生态学报, 2022, 33(9): 2397-2404 [33] Yang Z, Xu YZ, Mei HB, et al. Responses of soil microorganisms to simulated climate change in desert grassland in northern China. Journal of Water and Climate Change, 2022, 13: 1842 [34] Liu CY, Wang YY, Chen XY, et al. Cover cropping increases soil fungal-bacterial community diversity and network complexity in apple orchards on the Loess Pla-teau, China. Frontiers in Science, 2022, 10: 916288 [35] Li ZL, Zhao YA, Li ZG, et al. Nearly 30a shrub introduction in desert steppes has led to an increase in saprotrophic fungi, accelerating the degradation of carbon compounds and nitrate reduction. Environmental Research, 2025, 264: 120402 [36] Auer L, Buée M, Fauchery L, et al. Metatranscripto-mics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems. New Phytologist, 2024, 242: 1676-1690 [37] 吕俊, 于存. 木霉菌对白腐真菌所致木材腐朽防效研究. 山地农业生物学报, 2023, 42(3): 13-20 [38] Zhang T, Wang ZK, Lv XH, et al. High-throughput sequencing reveals the diversity and community structure of rhizosphere fungi of Ferula sinkiangensis at different soil depths. Scientific Reports, 2019, 9: 6558 [39] Sayer EJ, Tanner EVJ. Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. Journal of Ecology, 2010, 98: 1052-1062 |