[1] 周春丽, 李以康, 曹广民, 等. 碳氮稳定同位素技术在青藏高原高寒草甸生态系统研究中的应用: 进展与展望. 应用生态学报, 2020, 31(10): 3568-3578 [2] Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537 [3] Mininni AN, Tuzio AC, Brugnoli E, et al. Carbon isotope discrimination and water use efficiency in interspecific Prunus hybrids subjected to drought. Plant Physio-logy and Biochemistry, 2022, 175: 33-43 [4] Wang RZ, Peñuelas J, Li T, et al. Natural abundance of 13C and 15N provides evidence for plant-soil carbon and nitrogen dynamics in a N-fertilized meadow. Ecology, 2021, 102: e03348 [5] 禹朴家, 徐海量, 王炜, 等. 荒漠草地植物稳定性氮同位素对水分变化的响应. 干旱区研究, 2012, 29(2): 347-351 [6] Wang RZ, Dijkstra FA, Han XG, et al. Root nitrogen reallocation: What makes it matter? Trends in Plant Science, 2024, 29: 1077-1088 [7] Wright IJ, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827 [8] Fortunel C, Ruelle J, Beauchene J, et al. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytologist, 2014, 202: 79-94 [9] McCormack ML, Dickie IA, Eissenstat DM, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207: 505-518 [10] Wang YF, Han QM, Kitajima K, et al. Resource allocation strategies in the reproductive organs of Fagaceae species. Ecological Research, 2023, 38: 306-316 [11] Kahmen A, Wanek W, Buchmann N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammo-nium preference of plants along a temperate grassland gradient. Oecologia, 2008, 158: 371 [12] O’Leary MH. Carbon isotope fractionation in plants. Phytochemistry, 1981, 20: 553-567 [13] Badeck FW, Tcherkez G, Nogués S, et al. Post-photosynthetic fractionation of stable carbon isotopes between plant organs: A widespread phenomenon. Rapid Communications in Mass Spectrometry, 2005, 1990: 1381-1391 [14] Xu ZZ, Yu ZW, Wang D. Nitrogen translocation in wheat plants under soil water deficit. Plant and Soil, 2006, 280: 291-303 [15] Vogado NO, Winter K, Ubierna N, et al. Directional change in leaf dry matter δ13C during leaf development is widespread in C3 plants. Annals of Botany, 2020, 126: 981-990 [16] 邓秀秀, 施征, 曾立雄, 等. 干旱和遮荫对马尾松幼苗瞬时水分利用效率及δ13C的影响. 生态学杂志, 2024, 43(1): 140-145 [17] 王前登, 陈波浪, 玉素甫江, 等. 库尔勒香梨春季施用15N-尿素的吸收、分配和利用特性. 应用生态学报, 2018, 29(5): 1443-1449 [18] 董雯怡, 聂立水, 李吉跃, 等. 应用15N示踪研究毛白杨苗木对不同形态氮素的吸收及分配. 北京林业大学学报, 2009, 31(4): 97-101 [19] 古琛, 贾志清, 何凌仙子, 等. 恢复年限对高寒中间锦鸡儿群落组成和多样性的影响. 草业科学, 2022, 39(7): 1303-1311 [20] 陈淼, 刘顺, 许格希, 等. 青藏高原东缘不同植被类型下草本植物叶片碳氮稳定同位素差异及其驱动因素. 应用生态学报, 2024, 35(4): 877-885 [21] Zhang JH, He NP, Liu CC, et al. Variation and evolution of C/N ratio among different organs enable plants to adapt to N-limited environments. Global Chang Biology, 2020, 26: 2534-2543 [22] Shtangeeva I, Buša L, Viksna A. Carbon and nitrogen stable isotope ratios of soils and grasses as indicators of soil characteristics and biological taxa. Applied Geochemistry, 2019, 104: 19-24 [23] Vitousek PM. Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems, 1998, 1: 401-407 [24] Xu ZZ, Zhou GS, Wang YH. Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant and Soil, 2007, 301: 87-97 [25] Wan YQ, Mao MZ, Wan DL, et al. Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. BMC Plant Biology, 2018, 18: 31 [26] Gong XY, Chen Q, Lin S, et al. Tradeoffs between nitrogen-and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant and Soil, 2011, 340: 227-238 [27] 刘淑琴, 白存琳, 边振, 等. 沙漠边缘脆弱区土地利用变化及其生态环境效应: 以毛乌素沙漠南缘盐池县为例. 草业科学, 2020, 37(11): 2175-2184 [28] 宋乃平, 杨新国, 何秀珍, 等. 荒漠草原人工柠条林重建的土壤养分效应. 水土保持通报, 2012, 32(4): 21-26 [29] Jia ZQ, Zhu YJ, Liu LY. Different water use strategies of juvenile and adult Caragana intermedia plantations in the Gonghe Basin, Tibet Plateau. PLoS One, 2012, 7: e45902 [30] 高增璐, 高玉葆, 郑志荣, 等. 皇甫川流域梁地生境中间锦鸡儿不同龄级植株光合生理特性的比较研究. 植物研究, 2009, 29(2): 182-186 [31] Li YL, Chen J, Cui JY, et al. Nutrient resorption in Caragana microphylla along a chronosequence of plantations: Implications for desertified land restoration in North China. Ecological Engineering, 2013, 53: 299-305 [32] 姚允寅, 陈明, 王志东, 等. 百里荒牧场饲草15N天然丰度值的测定及其固氮能力初评. 中国草地, 1992(2): 20-24 [33] Elser JJ, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 2003, 6: 936-943 [34] Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 2014, 102: 275-301 [35] Brugnoli E, Farquhar GD. Photosynthetic fractionation of carbon isotopes//Sharkey TD, Eaton-Rye JJ, eds. Photosynthesis. Advances in Photosynthesis and Respiration. Dordrecht, Netherlands: Springer, 2000, 9: 399-434 [36] Zhang ZY. The characteristics of stable carbon isotope and water use efficiency for Populus tomentosa hybrid clones. Soil and Environmental Sciences, 2009, 18: 2267-2271 [37] Yu YZ, Liu HT, Yang F, et al. δ13C of bulk organic matter and cellulose reveal post-photosynthetic fractionation during ontogeny in C4 grass leaves. Journal of Experimental Botany, 2024, 75: 1451-1464 [38] Zhu FF, Dai LM, Hobbie EA, et al. Quantifying nitrogen uptake and translocation for mature trees: An in situ whole-tree paired 15N labeling method. Tree Physiology, 2021, 41: 2109-2125 [39] Dovrat G, Sheffer E. Symbiotic dinitrogen fixation is seasonal and strongly regulated in water-limited environments. New Phytologist, 2019, 221: 1866-1877 [40] Zhang JH, He NP, Liu CC, et al. Allocation strategies for nitrogen and phosphorus in forest plants. Oikos, 2018, 127: 1506-1514 [41] 刘丽颖, 殷有, 秦胜金, 等. 辽西半干旱区不同林龄大扁杏人工林的水分利用特征. 水土保持学报, 2016, 30(6): 118-122 [42] Brienen RJW, Gloor E, Clerici S, et al. Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. Nature Communications, 2017, 8: 288 [43] 张普河, 姚佳, 王雪韧, 等. 短期氮添加对荒漠草原土壤无机碳及土壤酸缓冲能力的影响. 草地学报, 2024, 32(7): 2081-2088 [44] Cheng WX, Chen QS, Xu YQ, et al. Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: Contrasting regional patterns and global patterns. Global Biogeochemical Cycles, 2009, 23: GB2005 [45] 郑璐嘉, 黄志群, 何宗明, 等. 林龄、叶龄对亚热带杉木人工林碳氮稳定同位素组成的影响. 林业科学, 2015, 51(1): 22-28 [46] Xu L, Aguila LCR, Wu DH, et al. Carbon sequestration and storage capacity of Chinese fir at different stand ages. Science of the Total Environment, 2023, 904: 166962 [47] 张有福, 卢晶晶, 王梦翔, 等. 核桃叶δ13C、δ15N和碳氮含量对海拔变化的响应. 经济林研究, 2023, 41(4): 52-59 |