[1] 熊康宁, 李晋, 龙明忠. 典型喀斯特石漠化治理区水土流失特征与关键问题. 地理学报, 2012, 67(7): 878-888 [2] 王世杰, 彭韬, 刘再华, 等. 加强喀斯特关键带长期观测研究, 支撑西南石漠化区生态恢复与民生改善. 中国科学院院刊, 2020, 35(7): 925-933 [3] 熊康宁, 朱大运, 彭韬, 等. 喀斯特高原石漠化综合治理生态产业技术与示范研究. 生态学报, 2016, 36(22): 7109-7113 [4] 李明辉, 李秧秧, 樊军. 陕北黄土区深剖面不同土地利用方式下土壤水分和温度的分布特征. 应用生态学报, 2024, 35(9): 2552-2560 [5] Pei YW, Huang LM, Li DF, et al. Characteristics and controls of solute transport under different conditions of soil texture and vegetation type in the water-wind erosion crisscross region of China’s Loess Plateau. Chemosphere, 2021, 273: 129651 [6] Lyu SD, Wang J, Song XW, et al. The relationship of δD and δ18O in surface soil water and its implications for soil evaporation along grass transects of Tibet, Loess, and Inner Mongolia Plateau. Journal of Hydrology, 2021, 600: 126533 [7] 邓文平, 章洁, 张志坚, 等. 北京土石山区水分在土壤-植物-大气连续体(SPAC)中的稳定同位素特征. 应用生态学报, 2017, 28(7): 2171-2178 [8] Mueller MH, Alaoui A, Kuells C, et al. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water. Journal of Hydrology, 2014, 519: 340-352 [9] Ehleringer JR, Dawson TE. Water uptake by plants: Perspectives from stable isotope composition. Plant, Cell and Environment, 1992, 15: 1073-1082 [10] Huang TM, Ma BQ, Pang ZH, et al. How does precipitation recharge groundwater in loess aquifers? Evidence from multiple environmental tracers. Journal of Hydrology, 2020, 583: 124532 [11] 李道宽, 吴小龙, 陈淼, 等. 不同降雨条件下海南省典型农田土壤优先流特征及其对溶质运移的影响[EB/OL]. (2025-02-21)[2025-05-16]. 水土保持通报. https://link.cnki.net/urlid/61.1094.X.20250220.1328.001 [12] 何永彬, 张信宝, 文安邦. 西南喀斯特山地的土壤侵蚀研究探讨. 生态环境学报, 2009, 18(6): 2393-2398 [13] 姬王佳, 黄亚楠, 李冰冰, 等. 陕北黄土区深剖面不同土地利用方式下土壤水氢氧稳定同位素特征. 应用生态学报, 2019, 30(12): 4143-4149 [14] 柯浩成, 李占斌, 李鹏, 等. 黄土区典型小流域包气带土壤水同位素特征. 水土保持学报, 2017, 31(3): 298-303 [15] 王锐, 刘文兆, 宋献方. 黄土塬区土壤水分运动的氢氧稳定同位素特征研究. 水土保持学报, 2014, 28(3): 134-137, 184 [16] 姜鹏举, 吴华武, 闵雷雷, 等. 华北平原典型土地利用类型下包气带土壤水稳定同位素变化特征. 土壤学报, 2023, 60(6): 1626-1636 [17] 王仕琴, 宋献方, 肖国强, 等. 基于氢氧同位素的华北平原降水入渗过程. 水科学进展, 2009, 20(4): 495-501 [18] 孙芳强, 尹立河, 马洪云, 等. 新疆三工河流域土壤水δD和δ18O特征及其补给来源. 干旱区地理, 2016, 39(6): 1298-1304 [19] 刘君, 聂振龙, 段宝谦, 等. 氢氧稳定同位素指示的呼和浩特地区土壤水的补给特征. 干旱区资源与环境, 2016, 30(10): 145-150 [20] 张小娟, 宋维峰, 吴锦奎, 等. 元阳梯田水源区土壤水氢氧同位素特征. 环境科学, 2015, 36(6): 7-8 [21] Han JJ, Duan X, Zhao YY, et al. Characteristics of stable hydrogen and oxygen isotopes of soil moisture under different land use in dry hot valley of Yuanmou. Open Chemistry, 2019, 17: 105-115 [22] 马海云, 张林林, 魏学琼, 等. 2000—2015年西南地区土地利用与植被覆盖的时空变化. 应用生态学报, 2021, 32(2): 618-628 [23] 曾成, 刘再华. 建设岩溶水-碳通量大型模拟试验场的构想. 资源环境与工程, 2013, 27(2): 196-200 [24] Xiang W, Si BC, Li M, et al. Stable isotopes of deep soil water retain long-term evaporation loss on China’s Loess Plateau. Science of the Total Environment, 2021, 784: 147153 [25] Craig H. Isotopic variations in meteoric waters. Science, 1961, 133: 1702-1703 [26] Landwehr JM, Coplen TB. Line-conditioned excess: A new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. International Conference on Isotopes in Environmental Studies, Monaco, 2004: 132-135 [27] Hu YD, Fan HD, Zhao M, et al. Differences in watershed evaporation indicated by hydrogen and oxygen single and dual isotopes: Evidence from controlled simulation tests under different land uses. Journal of Hydrology, 2023, 617: 129-142 [28] Wei Z, Lee X. The utility of near-surface water vapor deuterium excess as an indicator of atmospheric moisture source. Journal of Hydrology, 2019, 577: 123923 [29] 朱磊, 范弢, 郭欢. 西南地区大气降水中氢氧稳定同位素特征与水汽来源. 云南地理环境研究, 2014, 26(5): 61-67 [30] 田超. 黄河三角洲降水同位素变化特征及水汽来源. 应用生态学报, 2023, 34(8): 2194-2204 [31] 黄一民, 章新平, 孙葭. 长沙大气水线及与局地气象要素的关系. 长江流域资源与环境, 2014, 23(10): 1412-1417 [32] 王迪宙, 章新平, 刘仲黎, 等. 澳大利亚阿德莱德地区大气降水中稳定同位素变化特征. 地球环境学报, 2024, 15(4): 641-652 [33] 张重花, 马芬艳, 周俊. 张掖降水同位素及云下二次蒸发影响因素研究. 水文, 2025, 45(2): 56-62 [34] Zhou RX, Wang J, Tang CJ, et al. Identifying soil water movement and water sources of subsurface flow at a hillslope using stable isotope technique. Agriculture, Ecosystems & Environment, 2023, 10: 82-86 [35] Zheng WB, Wang SQ, Sprenger M, et al. Response of soil water movement and groundwater recharge to extreme precipitation in a headwater catchment in the North China Plain. Journal of Hydrology, 2019, 576: 466-477 [36] 许赟红, 刘琼, 陈勇航, 等. 新疆及周边中亚地区土地覆盖变化对地表反照率的影响. 干旱区研究, 2024, 41(10): 1649-1661 [37] 李琳, 石颜通, 杨林, 等. 北京冬春覆盖作物对农田土壤风蚀扬尘的影响. 天津农业科学, 2021, 27(1): 83-86 [38] 高壮壮, 刘海军, 张智郡, 等. 不同质地条件下土壤表层温度与土壤蒸发量的关系研究. 灌溉排水学报, 2019, 38(9): 42-48 [39] Zeng QR, Liu ZH, Chen B, et al. Carbonate weathering-related carbon sink fluxes under different land uses: A case study from the Shawan Simulation Test Site, Puding, Southwest China. Chemical Geology, 2017, 474: 58-71 [40] 朱求安, 吴晓丽, 于冬雪, 等. 黄河兰州以上区域草地覆盖变化对水源涵养的定量影响分析. 水科学进展, 2024, 35(4): 543-555 |