[1] 周杰, 杨洁, 张文柳. 甘南州生态系统服务时空变化及权衡协同关系. 环境科学, 2025, 46(5): 2398-2409 [2] 牛丽楠, 邵全琴, 陈美祺, 等. 2000—2020年长江流域生态系统服务变化及其权衡协同关系. 资源科学, 2024, 46(5): 853-866 [3] Fu BJ, Wang S, Su CH, et al. Linking ecosystem processes and ecosystem services. Current Opinion in Environmental Sustainability, 2013, 5: 4-10 [4] 严岩, 朱捷缘, 吴钢, 等. 生态系统服务需求、供给和消费研究进展. 生态学报, 2017, 37(8): 2489-2496 [5] 刘美娟, 仲俊涛, 王蓓, 等. 基于InVEST模型的青海湖流域产水功能时空变化及驱动因素分析. 地理科学, 2023, 43(3): 411-422 [6] 魏培洁, 吴明辉, 贾映兰, 等. 基于InVEST模型的疏勒河上游产水量时空变化特征分析. 生态学报, 2022, 42(15): 6418-6429 [7] Qin KY, Liu JY, Yan LW, et al. Integrating ecosystem services flows into water security simulations in water scarce areas: Present and future. Science of the Total Environment, 2019, 670: 1037-1048 [8] 刘佳, 肖玉, 张昌顺, 等. 基于地表水与地下水分割校正的漓江流域水供给服务时空格局研究. 生态学报, 2023, 43(15): 6099-6116 [9] 辛培源, 田甜, 张美露, 等. 基于InVEST模型和地理探测器的吉林省生境质量变化及驱动因素评估. 应用生态学报, 2024, 35(10): 2853-2860 [10] 吕乐婷, 任甜甜, 孙才志, 等. 1980—2016年三江源国家公园水源供给及水源涵养功能时空变化研究. 生态学报, 2020, 40(3): 993-1003 [11] 戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析. 地理学报, 2020, 75(3): 607-619 [12] 陈武迪, 刘晓煌, 李洪宇, 等. 基于InVEST模型的新疆1990—2018年产水服务时空变化及驱动因素分析. 现代地质, 2024, 28(3): 636-647 [13] Bai Y, Ochuodho TO, Yang J, et al. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators, 2019, 102: 51-64 [14] Li JH, Zhou KC, Xie BG, et al. Impact of landscape pattern change on water-related ecosystem services: Comprehensive analysis based on heterogeneity perspective. Ecological Indicators, 2021, 133: 108372 [15] Wu L, Xu YH, Yang Z, et al. Factors influencing the spatial differentiation of water yield: Statistics and appraisals with predictors of subbasins. Journal of Hydrologic Engineering, 2024, 30: 04024048 [16] He J, Zhao YQ, Wen CH. Spatiotemporal variation and driving factors of water supply services in the Three Gorges Reservoir Area of China based on supply-demand balance. Water, 2022, 14: 2271 [17] 万志纲, 丁文广, 蒲晓婷, 等. 祁连山国家公园产水量时空变化及驱动因素分析. 水土保持学报, 2023, 37(6): 161-169 [18] Liu XC, Qiao RL, Wu ZQ, et al. Unveiling the spatially varied nonlinear effects of urban built environment on housing prices using an interpretable ensemble learning model. Applied Geography, 2024, 173: 103458 [19] Yuan YY, Guo W, Tang SQ, et al. Effects of patterns of urban green-blue landscape on carbon sequestration using XGBoost-SHAP model. Journal of Cleaner Production, 2024, 476: 143640 [20] Wang YC, Sheng S, Xiao HB. The cooling effect of hybrid land-use patterns and their marginal effects at the neighborhood scale. Urban Forestry & Urban Greening, 2021, 59: 127015 [21] 谭洁, 危千骏, 廖朝阳, 等. 基于XGBoost-SHAP可解释机器学习模型的城市形态与地表温度的关系. 应用生态学报, 2025, 36(3): 659-670 [22] Du CX, Pei J, Feng JJ. Unraveling the complex interactions between ozone pollution and agricultural productivity in China’s main winter wheat region using an interpretable machine learning framework. Science of the Total Environment, 2024, 954: 176293 [23] Yang C, Chen MY, Yuan Q. The application of XGBoost and SHAP to examining the factors in freight truck-related crashes: An exploratory analysis. Accident Analysis and Prevention, 2021, 158: 106153 [24] Jin SJ, Wang X, Lyu T, et al. Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis. Journal of Transport Geography, 2022, 103: 103414 [25] Li ZQ. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Computers Environment and Urban Systems, 2022, 96: 101845 [26] Liu Q, Qiao JJ, Li MJ, et al. Spatiotemporal heterogeneity of ecosystem service interactions and their drivers at different spatial scales in the Yellow River Basin. Science of the Total Environment, 2023, 908: 168486 [27] 王懋源, 齐实, 郭衍瑞, 等. 藏东-川西生态维护水源涵养区产水量驱动机制探讨. 生态学报, 2024, 44(21): 9520-9534 [28] 四川省水利厅. 历年四川省水资源公报[EB/OL]. (2024-03-20)[2025-05-04]. https://slt.sc.gov.cn/ [29] Zhou WZ, Liu GH, Pan JJ, et al. Distribution of available soil water capacity in China. Journal of Geographical Sciences, 2005, 15: 3-12 [30] Huang Y, Shi KF, Zong HM, et al. Exploring spatial and temporal connection patterns among the districts in Chongqing based on highway passenger flow. Remote Sensing, 2020, 12: 27 [31] 殷允可, 李昊瑞, 张铭, 等. 不同气候区生态系统服务权衡空间异质性及其驱动因素: 以川滇-黄土高原生态屏障带为例. 生态学报, 2024, 44(1): 107-116 [32] 胡昂, 吴俣思, 黄莹, 等. 高空间异质性区域生态系统服务供需与驱动力分析: 以四川省为例. 长江流域资源与环境, 2022, 31(5): 1062-1076 [33] 李晓健, 马林兵. 基于参数最优地理探测器的粤东北耕地非农化特征与影响因素研究. 水土保持通报, 2024, 44(5): 100-112 [34] 郭佳晖, 刘晓煌, 张文博, 等. 基于InVEST模型和PLUS模型的云贵高原产水量时空变化特征分析. 现代地质, 2024, 38(3): 624-635 [35] 孙琪, 徐长春, 任正良, 等. 塔里木河流域产水量时空分布及驱动因素分析. 灌溉排水学报, 2021, 40(8): 114-122 |