Chinese Journal of Applied Ecology ›› 2003, Vol. ›› Issue (4): 627-631.
Previous Articles Next Articles
LI Wenxue, CHEN Tongbin
Received:
2002-07-05
Revised:
2002-11-28
CLC Number:
LI Wenxue, CHEN Tongbin. Physiological and molecular biological mechanisms of heavy metal absorption and accumulation in hyperaccumualtors[J]. Chinese Journal of Applied Ecology, 2003, (4): 627-631.
[1] Assuncao AGL, Martins PDC, Polter SD,et al.2001. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens Plant Cell Environ,24:217~226 [2] Chen T-B,Wei C-Y,Huang Z-C,et al.2002a. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation.Chin Sci Bull,47:902~905 [3] Chen T-B,Fan Z-L,Lei M,et al. 2002b. Arsenic uptake of hyperaccumulating fern Pteris vittata L.: Effect of phosphorus and its significance, Chin Sci Bull,47:1876~1879 [4] Clemens S, Kim EJ, Neumann D,et al.1999. Tolerance to toxic metals by a gene family of photochelatin synthase genes from plants and yeast.EMBO J,18:3325~3333 [5] Cobbett CS. 2000. Phytochelatin biosynthesis and function in heavy metal detoxification.Curr Opin Plant Biol,3:211~216 [6] Dhankher OP, Li Y, Rosen BP,et al. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and (-glutamylcysteine synthetase expression.Nature Biotech,20:1140~1145 [7] Ebbs S, Lau I, Ahner B,et al. 2002. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescen.Planta,214(4):635~640 [8] Eide D, Broderius M, Fett J,et al. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast.Proc Natl Acad Sci,93:5624~5628 [9] Foley RC, Singh KB. 1994. Isolation of a Vicia faba metallothioneins-like gene: expression in foliar trichomes.Plant Mol Biol,26:435~444 [10] Foyer CH, Souriau N, Perret S,et al.1995. Overexpression of glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in Polar trees.Plant Physiol,109:1047~1057 [11] Frey B, Keller K, Zierold K,et al.2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens.Plant Physiol,23:675~687 [12] Garcia-Hernandez M, Murphy A, Taiz L. 1998. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis.Plant Physiol,118:387~397 [13] Goldsbrough PB. 1998. Metal tolerance in plants: the role of phytochelatins and metallothioneins. In: Terry N, Banuelos GS eds. Phytoremediation of trace elements.Michigan:Ann Arbor Press. [14] Grill E, Loffler S, Winnacker EL,et al. 1989. Phytochelatins, the heavy metal binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase).Proc Natl Acad Sci,86:6838~6842 [15] Grill E, Winnacker EL, Zenk MH. 1987. Phytochelatins, a class of heavy metal binding peptides from plants, are functionally analogous to metallothioneins.Proc Natl Acad Sci,84:439~443 [16] Ha SB, Smith AP, Howden R,et al. 1999. Photochelatin synthase genes from Arabidopsis thaliana and the yeast,Schizosaccharomyses pombe.Plant Cell,11:1153~1164 [17] Hartley-Whitaker J, Ainsworth G, Vooijs R,et al.2001. Photochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol,126:299~306 [18] Howden R, Goldsbrough PB, Andersen CR,et al. 1995. Cadmium-sensitive,cad1, mutants of Arabidopsis thaliana are photochelatin deficient.Plant Physiol,107:1059~1066 [19] Kramer U, Cotter-Howells JD, Charnock JM,et al. 1996. Free histidine as a metal chelator in plants that accumulate nickel.Nature,379:635~636 [20] Kramer U, Pickering IJ, Prince RC,et al. 2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol,122:1343~1353 [21] Lasat MM, Pence SN, Garvin DF,et al. 2000. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot,51(342):71~79 [22] Murphy A, Zhou J, Goldsbrough PB,et al. 1997. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol,113:1293~1301 [23] Nathalie ALM,Hassinen VH, Hakvoort HWJ,et al. 2001. Enhanced copper tolerance in Silene vulgaris(Moench) garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene.Plant Physiol,126:1519~1526 [24] Pence NS, Larsen PB, Ebbs SD,et al. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator.Proc Natl Acad Sci,97:4956~4960 [25] Persans MW, Yan XG, Patnoe JMML,et al.1999. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi geosingense.Plant Physiol,121:1117~1126 [26] Poulter A, Collin HA, Thurman DA,et al. 1985. The role of the cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L.Plant Sci,42:61~66 [27] Salt DE, Prince RC, Pickering IJ,et al.1995. Mechanisms of cadmium mobility and accumulation in Indian mustard.Plant Physiol,109:1427~1433 [28] Schmoger MEV, Oven M, Grill E. 2000. Detoxification of arsenic by phytochelatins in plants.Plant Physiol,122:793~801 [29] Thomine S, Wang R, Ward JM,et al. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes.Proc Natl Acad Sci,97:4991~4996 [30] Vatamaniuk OK, Mari S, Lu YP,et al. 1999. AtpCS1, a photochelatin synthase genes from Arabidopsis thaliana:isolation and in vitro reconstitution.Proc Natl Acad Sci,96:7110~7115 [31] Wang J-H (王剑虹),Ma M (麻密). 2000. Biological mechanisms of phytoremediation.Chin Bull Bot(植物学通报),17(6): 504~510 (in Chinese) [32] Wei C-Y (韦朝阳),Chen T-B (陈同斌). 2001. Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad.Acta Ecol Sin(生态学报),21(7):1196~1203 (in Chinese) [33] Wei C-Y (韦朝阳),Chen T-B (陈同斌). 2002. The ecological and chemical character of plants in arsenic abnormal areas.Acta Phytoecol Sin(植物生态学报),26:695~700(in Chinese) [34] Zaal BJVD, Neuteboom LW, Pinas JE,et al.1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.Plant Physiol,119:1047~1055 [35] Zenk MH. 1996. Heavy metal detoxification in higher plants-a review.Gene,179:21~30 [36] Zhao H, Eide D.1996a. The yeast ZRT1 gene encodes the zinc transporter protein of a high affinity uptake system induced by zinc limitation.Proc Natl Acad Sci,93:2454~2458 [37] Zhao H, Eide D. 1996b. The ZRT2 gene encodes the low affinity zinc transporter in Saccaromyces cerevisiae.J Biol Chem,271:23203~23210 [38] Zhu YL, Pilon-Smits EAH, Jouanin L.1999. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance.Plant Physiol,119:73~79 [39] Zhu YL, Pilon-Smits EAH, Tarun AS,et al. 1999. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase.Plant Physiol,121:1169~1177 |
[1] | YANG Zhenkang, YANG Wanrong, LIU Zhijuan, GAO Weida, REN Tusheng, SHEN Yanjun, YANG Xiaoguang. Effects of climate change on wind erosion in the three provinces of Northeast China [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2429-2435. |
[2] | LENG Peng, WANG Jianqing, TAN Yunyan, SHAO Yajun, WANG Liyan, SHI Xiuzhen, ZHANG Guoyou. Effects of elevated carbon dioxide (CO2)and ozone (O3)concentrations on ectoenzyme activities in rice rhizospheric soil [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2185-2193. |
[3] | XIA Zhuoyi, SU Jie, YIN Haiwei, KONG Fanhua. Temporal and spatial patterns of habitat of Nipponia nippon in China under the background of climate change [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1467-1473. |
[4] | ZHANG Huisheng, XU Lin, LYU Weiwei, ZHOU Yu, WANG Weifeng, GAO Ruihe, CUI Shaopeng, ZHANG Zhiwei. Multidimensional climatic niche conservatism and invasion risk of Phenacoccus solenopsis [J]. Chinese Journal of Applied Ecology, 2023, 34(6): 1649-1658. |
[5] | WANG Ziwen, YIN Jin, WANG Xing, CHEN Yue, MAO Zikun, LIN Fei, GONG Zongqiang, WANG Xugao. Habitat suitability evaluation of invasive plant species Datura stramonium in Liaoning Province: Based on Biomod2 combination model [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1272-1280. |
[6] | LI Chunbo, ZHANG Yuan, LIU Yage, WU Jiabing, WANG Anzhi. Temporal and spatial variations and influencing factors of gross primary productivity in Changbai Mountain Nature Reserve, China [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1341-1348. |
[7] | BAI Jinke, LI Xiaoyu, WANG Li. Variations of soil quality in the southern Qinghai-Tibet Plateau during 1980s to 2020s [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1367-1374. |
[8] | LING Ziyao, PENG Lihua, WEN Hui. Comparison on the stormwater runoff effects of roof greening in different urban functional areas [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 491-498. |
[9] | DENG Ya-qin, XU Zhi, ZHANG Yong, WANG Yu-yun. Responses of soil microbial biomass nitrogen to organic fertilizer with different degrees of maturity and regu-lation to soil mineral nitrogen [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 137-144. |
[10] | WANG Jun, LI Guang, YAN Li-juan, LIU Qiang, NIE Zhi-gang. Variation characteristics of climatic potential yield and resources utilization efficiency of maize under the background of climate change in agro-pastoral transitional zone of Gansu, China [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 160-168. |
[11] | HUANG Hui, ZHENG Chang-ling, ZHANG Jin-song, MENG Ping. Climate changes in southern Taihang Mountain area from 1980 to 2019 [J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2139-2145. |
[12] | LIU Jie, JI Yu-he, ZHOU Guang-sheng, ZHOU Li, LYU Xiao-min, ZHOU Meng-zi. Temporal and spatial variations of net primary productivity (NPP) and its climate driving effect in the Qinghai-Tibet Plateau, China from 2000 to 2020 [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1533-1538. |
[13] | FENG Jia-yi, RUAN Ke-jin, SU Si-ning, ZHANG Xue-ping, WU Dao-ming, WAN Li-xin, ZENG Shu-cai. Adaptability of Broussonetia papyrifera to sewage sludge and its characteristics of nutrient and heavy metal uptake and accumulation [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1629-1638. |
[14] | LIU Jie, DONG Yan-jun, LI Zong-shan. Research advances in shrub dendroecology [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1699-1708. |
[15] | LI Xiao-tian, HUANG Zhuo-shen, TANG You-qian, LIN Chang-quan, WANG Chun-ming. Generation mechanism and control methods of antibiotic and heavy metal resistance genes in poultry waste: A review [J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1719-1728. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 0
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||