[1] IPCC. Climate change 2021: The physical science basis. Chemistry International, 2021, 43: 22-23 [2] Deere D, Leusch FDL, Humpage A, et al. Hypothetical scenario exercises to improve planning and readiness for drinking water quality management during extreme weather events. Water Research, 2017, 111: 100-108 [3] 宋扬, 王冀, 冯璞玉, 等. 基于ETCCDI模态的京津冀地区极端气候事件特征及影响分析. 气象与环境学报, 2024, 40(3): 97-105 [4] 张利平, 杜鸿, 夏军, 等. 气候变化下极端水文事件的研究进展. 地理科学进展, 2011, 30(11): 1370-1379 [5] Zong YQ, Chen XQ. The 1998 flood on the Yangtze, China. Natural Hazards, 2000, 22: 165-184 [6] 王劲松, 李耀辉, 王润元, 等. 我国气象干旱研究进展评述. 干旱气象, 2012, 30(4): 497-508 [7] 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述. 地球科学进展, 2014, 29(5): 577-589 [8] 王振亚, 姚成, 董俊玲, 等. 郑州“7· 20”特大暴雨降水特征及其内涝影响. 河海大学学报: 自然科学版, 2022, 50(3): 17-22 [9] Liu MX, Xu XL, Sun A. Decreasing spatial variability in precipitation extremes in southwestern China and the local/large-scale influencing factors. Journal of Geophysical Research: Atmospheres, 2015, 120: 6480-6488 [10] Dai X, Wang LC, Li X, et al. Characteristics of the extreme precipitation and its impacts on ecosystem services in the Wuhan Urban Agglomeration. Science of the Total Environment, 2023, 864: 161045 [11] 侯承志, 黄丹青, 桂东伟, 等. 1961—2019年中国北方沙漠沙地极端气候变化特征及其影响因素. 地理科学, 2023, 43(8): 1495-1505 [12] Zhang L, Liu YF, Zhan HB, et al. Influence of solar activity and EI Niño-Southern Oscillation on precipita-tion extremes, streamflow variability and flooding events in an arid-semiarid region of China. Journal of Hydro-logy, 2021, 601: 126630 [13] Chen FL, Chen HM, Yang YA. Annual and seasonal changes in means and extreme events of precipitation and their connection to elevation over Yunnan Province, China. Quaternary International, 2015, 374: 46-61 [14] Cheng QP, Gao L, Zuo XA, et al. Statistical analyses of spatial and temporal variabilities in total, daytime, and nighttime precipitation indices and of extreme dry/wet association with large-scale circulations of Southwest China, 1961-2016. Atmospheric Research, 2019, 219: 166-182 [15] Song XM, Zhang CH, Zhang JY, et al. Potential linkages of precipitation extremes in Beijing-Tianjin-Hebei region, China, with large-scale climate patterns using wavelet-based approaches. Theoretical and Applied Climatology, 2020, 141: 1251-1269 [16] Bao NY, Song WF, Ma JG, et al. Multi-source remote sensing analysis of Yilong Lake's surface water dyna-mics (1965-2022): A temporal and spatial investigation. Water, 2024, 16: 2058 [17] Karl TR, Nicholls N, Ghazi A. Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. Climatic Change, 1999, 42: 3-7 [18] Sen PK. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 1968, 63: 1379-1389 [19] Kendall MG. Rank correlation methods. British Journal of Psychology, 1990, 25: 86-91 [20] Malakar P, Mukherjee A, Bhanja SN, et al. Three deca-des of depth-dependent groundwater response to climate variability and human regime in the transboundary Indus-Ganges-Brahmaputra-Meghna mega river basin aquifers. Advances in Water Resources, 2021, 149: 103856 [21] Wang JJ, Zhao AZ. Spatio-temporal variation of extreme climates and its relationship with teleconnection patterns in Beijing-Tianjin-Hebei from 1980 to 2019. Atmosphere, 2022, 13: 1979 [22] Hu W, Si BC. Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrology and Earth System Sciences, 2016, 20: 3183-3191 [23] Hussain A, Hussain I, Ali S, et al. Assessment of precipitation extremes and their association with NDVI, monsoon and oceanic indices over Pakistan. Atmospheric Research, 2023, 292: 106873 [24] Su L, Miao CY, Duan QY, et al. Multiple-wavelet coherence of world's large rivers with meteorological factors and ocean signals. Journal of Geophysical Research: Atmospheres, 2019, 124: 4932-4954 [25] Wu SQ, Zhao WJ, Yao JQ, et al. Precipitation variations in the Tai Lake Basin from 1971 to 2018 based on innovative trend analysis. Ecological Indicators, 2022, 139: 108868 [26] 徐用兵, 雷秋良, 周脚根, 等. 1960—2015年云南省极端气候指数变化特征研究. 中国农业资源与区划, 2020, 41(11): 15-27 [27] 吉戴婧琪, 元媛, 韩剑桥. 中国极端降水事件的时空变化及趋势预测. 中国农村水利水电, 2022(10): 74-80 [28] 朱展鹏, 李忠木. 1959—2015年云南省极端气候指数的时空变化特征分析. 大理大学学报, 2023, 8(6): 52-60 [29] 于淑婷, 罗亚丽, 李建. 1982—2016 年云南省不同强度降水气候态及其变化. 暴雨灾害, 2020, 39(4): 363-371 [30] Martinez-Villalobos C, Neelin JD. Regionally high risk increase for precipitation extreme events under global warming. Scientific Reports, 2023, 13: 5579 [31] Yan WB, He YL, Cai Y, et al. Relationship between extreme climate indices and spatiotemporal changes of vegetation on Yunnan Plateau from 1982 to 2019. Global Ecology and Conservation, 2021, 31: e01813 [32] Batungwanayo P, Vanclooster M, Alonso A, et al. Wavelet-based analysis of hydro-climatic and vegetation dynamics in heterogeneous agro-climatic zones of East Africa. Journal of Water and Climate Change, 2024, 15: 4054-4075 [33] Xiang YY, Wang T, Wang HJ, et al. Influence of the Pacific Decadal Oscillation on winter temperatures and precipitation over the southern Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2024, 129: e2023JD038653 [34] Park H, Mun T, Cha DH, et al. How does Pacific Deca-dal Oscillation Modulate extreme heavy rainfall frequency over Far East Asia? Geophysical Research Letters, 2025, 52: e2024GL112665 [35] Du YB, Zhang J, Zhao SW, et al. Impact of the eastward shift in the negative-phase NAO on extreme drought over northern China in summer. Journal of Geophysical Research: Atmospheres, 2020, 125: e2019JD032019 [36] Oh H, Jhun JG, Ha KJ, et al. Combined effect of the East Atlantic/West Russia and Western Pacific teleconnections on the East Asian winter monsoon. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53: 273-285 [37] Geng X, Noh KM, Kim K, et al. Midwinter breakdown of ENSO climate impacts in East Asia. Npj Climate and Atmospheric Science, 2023, 6: 155 [38] Xiao MZ, Zhang Q, Singh VP. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. International Journal of Climatology, 2015, 35: 3556-3567 [39] Adarsh S, Fathima S, Arunkumar R. Multiscale teleconnection analysis of rainfall patterns over Calicut, India using wavelet coherence. Journal of Earth System Science, 2024, 133: 20 [40] Wang Y, Liu SN, Chen J, et al. Investigating the spatio-temporal variations of extreme rainfall and its potential driving factors with improved partial wavelet coherence. Frontiers in Environmental Science, 2022, 10: 951468 [41] 王垚, 史海匀. 粤港澳大湾区极端降雨的时空变化及其潜在驱动因素探究. 水资源保护, 2024, 40(6): 28-37 [42] Cheng QP, Zhong FL, Wang P. Baseflow dynamics and multivariate analysis using bivariate and multiple wavelet coherence in an alpine endorheic river basin (Northwest China). Science of the Total Environment, 2021, 772: 145013 [43] Cheng QP, Zhong FL, Wang P. Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China. Atmospheric Research, 2021, 247: 105256 |