Effects of soil warming on fine root stoichiometry of Castanopsis kawakamii natural forest in mid-subtropical zone
HUANG Jinxue, WU Fan, LIANG Tianhao, FU Hejing, JING Chenhong, YANG Zhijie, XIONG Decheng
2025, 36(11):
3256-3264.
doi:10.13287/j.1001-9332.202511.001
Asbtract
(
28 )
PDF (2259KB)
(
1
)
We conducted an in-situ soil warming (0, +4 ℃) experiment in Samming, Fujian Province to investigate the effects of soil warming on the contents of carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and stoichiometry in absorptive and transport roots of Castanopsis kawakamii natural forest during the rainy season (May) and dry season (November). Roots were collected using the in-growth core method. The results showed that in the rainy season, warming did not alter the contents of C, N, P, K, Ca, Mg, and the N/P in either absorptive roots or transport roots, while C/N in transport roots and Ca/Mg in absorptive roots increased by 40.0% and 82.7%, respectively. In the dry season, warming reduced C, N, P and K contents of absorptive roots by 10.8%, 34.8%, 37.3%, 58.8%, respectively; increased the C/P by 43.8%; reduced C, N, P and Mg contents in transport roots by 4.2%, 27.0%, 28.7%, 20.0%, respectively; and increased C/N by 30.0%. However, there were no significant changes in Ca content, N/P, and Ca/Mg in either absorptive or transport roots. Collectively, warming had a greater impact on the stoichiometric traits of fine roots in the dry season than in the rainy season. In the rainy season, both the control and warming treatments exhibited P limitation or N and P co-limi-tation. In the dry season, both treatments were primarily N-limited. Moreover, there was a significant negative correlation between K and Ca in absorptive roots and transport roots in warming treatment. There was a significant positive correlation between C, N, C/P of absorptive roots and soil temperature and moisture. Fine roots could maintain stable nutrient absorption following warming in the rainy season, while warming could affect absorption of major nutrient elements in the dry season. Warming did not change nutrient limitation status of natural forest, but significantly affected the stoichiometric characteristics of fine roots by altering soil temperature and moisture.