Chinese Journal of Applied Ecology ›› 2021, Vol. 32 ›› Issue (10): 3448-3458.doi: 10.13287/j.1001-9332.202110.038
Previous Articles Next Articles
BAO Guang1,2*, LIU Zhi-ye1, LIU Na1,2, WU Mai-li1
Received:
2021-07-06
Revised:
2021-09-13
Online:
2021-10-15
Published:
2022-04-15
Contact:
* E-mail: baoguang23@163.com
Supported by:
BAO Guang, LIU Zhi-ye, LIU Na, WU Mai-li. Simulation analysis of the radial growth characteristics of Pinus sylvestris var. mongolica in Hulunbuir Sandy Land by Vaganov-Shashkin Model[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3448-3458.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202110.038
[1] Shashkin AV, Vaganov EA. Simulation model of climatically determined variability of conifers' annual increment (on the example of common pine in the steppe zone). Russian Journal of Ecology, 1993, 24: 275-280 [2] Evans MN, Reichert BK, Kaplan A, et al. A forward modeling approach to paleoclimatic interpretation of tree-ring data. Journal of Geophysical Research, 2006, 111: G03008, doi: org/10.1029/2006JG000166 [3] George SS, Meko DM, Evans MN. Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783. Quaternary Research, 2008, 70: 158-172 [4] Touchan R, Shishov VV, Meko D, et al. Process based model sheds light on climate sensitivity of Mediterranean tree-ring width. Biogeosciences, 2012, 9: 965-972 [5] 史江峰, 刘禹, 蔡秋芳, 等. 油松(Pinus tabuliformis)树轮宽度与气候因子统计相关的生理机制——以贺兰山地区为例. 生态学报, 2006, 26(3): 697-705 [Shi J-F, Liu Y, Cai Q-F, et al. A case study of physio-logical characteristics of statistical correlation between Pinus tabuliformis tree-ring widths and climatic factors. Acta Ecologica Sinica, 2006, 26(3): 697-705] [6] 张永香, 邵雪梅, 徐岩, 等. 利用生理模型模拟的柴达木东北缘祁连圆柏对气候要素的响应过程. 科学通报, 2011, 56(12): 93-100 [Zhang Y-X, Shao X-M, Xu Y, et al. Process-based modeling analyses of Sabina przewalskii growth response to climate factors around the north-eastern Qaidam Basin. Chinese Science Bulletin, 2011, 56(12): 93-100] [7] 周非飞. 青藏高原东北部树轮气候响应非线性模式与区域气候变化驱动机制研究. 硕士论文. 兰州: 兰州大学, 2013 [Zhou F-F. Research on Nonlinear Climate-growth Patterns and Driving Mechanisms of Regional Long-term Climatic Variability in the Northeastern Tibetan Plateau. Master Thesis. Lanzhou: Lanzhou University, 2013] [8] Wu ML, Liu N, Bao G, et al. Climatic factors of radial growth of Pinus tabuliformis in eastern Gansu, northwest China based on Vaganov-Shashkin model. Geografiska Annaler: Series A, Physical Geography, 2020, 102: 196-208 [9] He M, Yang B, Rossi S, et al. Simulated and predicted responses of tree stem radial growth to climate change: A case study in semi-arid north central China. Dendrochronologia, 2019, 58: 125632, doi: org/10.1016/j.dendro.2019.125632 [10] Zeng X, Wei C, Liu X, et al. Qinghai spruce (Picea crassifolia) and Chinese pine (Pinus tabuliformis) show high vulnerability and similar resilience to early-growing-season drought in the Helan Mountains, China. Ecological Indicators, 2020, 110: 105871, doi: org/10.1016/j.ecolind.2019.105871 [11] Yang B, He MH, Vladimir S, et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 6966-6971 [12] Zhang J, Gou X, Zhang Y, et al. Forward modeling analyses of Qilian Juniper (Sabina przewalskii) growth in response to climate factors in different regions of the Qilian Mountains, northwestern China. Trees, 2016, 30: 175-188 [13] 杨小平, 梁鹏, 张德国, 等. 中国东部沙漠/沙地全新世地层序列及其古环境. 中国科学: 地球科学, 2019, 49(8): 1293-1307 [Yang X-P, Liang P, Zhang D-G, et al. Holocene aeolian stratigraphic sequences in the eastern portion of the desert belt (sand seas and sandy lands) in northern China and their palaeoenvironmental implications. Science China Earth Sciences, 2019, 49(8): 1293-1307] [14] 朱宾宾. 新形势下呼伦贝尔沙地治理困境分析. 中国水土保持, 2018, 16(3): 39-40 [Zhu B-B. Analysis on the predicament of Hulunbuir Sandy Land governance under the new situation. Soil and Water Conservation in China, 2018, 16(3): 39-40] [15] Chen ZJ, Zhang XL, Cui MX, et al. Tree-ring based precipitation reconstruction for the forest-steppe ecotone in northern Inner Mongolia, China and its linkages to the Pacific Ocean variability. Global and Planetary Change, 2012, 86-87: 45-56 [16] Bao G, Liu Y, Liu N, et al. A tree-ring-based reconstruction of the Yimin River annual runoff in the Hulun Buir region, Inner Mongolia, for the past 135 years. Chinese Science Bulletin, 2012, 57: 4765-4775 [17] Liu N, Liu Y, Bao G, et al. Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean. Journal of Asian Earth Sciences, 2016, 115: 298-307 [18] 宋来萍, 刘礴霏, 张红蕾, 等. 呼伦贝尔沙地樟子松树轮对气候变化的响应. 东北林业大学学报, 2015, 43(5): 17-22 [Song L-P, Liu B-F, Zhang H-L, et al. Response of Pinus sylvestris var. mongolica tree-ring width to climate change in Hulunbuir sandy land, China. Journal of Northeast Forestry University, 2015, 43(5): 17-22] [19] 杜宇佳, 高广磊, 陈丽华, 等. 呼伦贝尔沙区土壤细菌群落结构与功能预测. 中国环境科学, 2019, 39(11): 4840-4848 [Du Y-J, Gao G-L, Chen L-H, et al. Soil bacteria community structure and function prediction in the Hulun Buir Sandy Area. China Environmental Science, 2019, 39(11): 4840-4848] [20] Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bulletin, 1983, 43: 69-78 [21] Cook ER. A Time Series Analysis Approach to Tree Ring Standardization. PhD Thesis. Tucson, AZ, USA: University of Arizona, 1985 [22] 吴买利. 呼伦贝尔沙地樟子松气候-生长响应的模拟研究. 硕士论文. 宝鸡: 宝鸡文理学院, 2021 [Wu M-L. Simulation Study on Climatic-growth Response of Pinus sylvestris var. mongolica in Hulunbuir Sandy Land. Master Thesis. Baoji: Baoji University of Arts and Sciences, 2021] [23] 刘娜. 内蒙古呼伦贝尔沙地樟子松树轮气候学研究. 博士论文. 西安: 西安交通大学, 2017 [Liu N. Dendroclimatology of Pinus sylvestris var. mongolica in Hulunbeier Sandy Land, Inner Mongolia. PhD Thesis. Xi'an: Xi'an Jiaotong University, 2017] [24] 包光, 刘娜. 呼伦贝尔沙地核心保护区樟子松径向生长的气候响应特征. 地球环境学报, 2018, 9(4): 392-397 [Bao G, Liu N. Climatic responses of radial growth of Pinus sylvestris var. mongolica in the core area of Hulunbeier Sandy Land. Journal of Earth Environment, 2018, 9(4): 392-397] [25] 何吉成, 王丽丽, 邵雪梅. 漠河樟子松树轮指数与标准化植被指数的关系研究. 第四纪研究, 2005, 25(2): 252-257 [He J-C, Wang L-L, Shao X-M. The relationships between Mongolian Scotch pine tree ring indices and normalized difference vegetation index in Mohe, China. Quaternary Sciences, 2005, 25(2): 252-257] [26] 王延芳, 张永香, 勾晓华, 等. 祁连山中部低海拔地区青海云杉径向生长的气候响应机制. 生态学报, 2020, 40(1): 161-169 [Wang Y-F, Zhang Y-X, Gou X-H, et al. Climate response mechanism of radial growth of Picea crassifolia in low altitude area of middle Qilian Mountains. Acta Ecologica Sinica, 2020, 40(1): 161-169] [27] Zeng X, Evans MN, Liu X, et al. Spatial patterns of precipitation-induced moisture availability and their effects on the divergence of conifer stem growth in the western and eastern parts of China's semi-arid region. Forest Ecology and Management, 2019, 451: 117524. Doi.org/10.1016/j.foreco.2019.117524 [28] 陈兰, 李书恒, 侯丽, 等. 基于Vaganov-Shashkin模型的太白红杉径向生长对气候要素的响应. 应用生态学报, 2017, 28(8): 2470-2480 [Chen L, Li S-H, Hou L, et al. Response of Larix chinensis radial growth to climatic factors based on the Vaganov-Shashkin model. Chinese Journal of Applied Ecology, 2017, 28(8): 2470-2480] [29] 阮亚男, 萧英男, 杨立新, 等. 大连市黑松树木水分利用效率的环境响应. 应用生态学报, 2017, 28(9): 2849-2855 [Ruan Y-N, Xiao Y-N, Yang L-X, et al. Environmental response of intrinsic water use efficiency of Pinus thunbergii in Dalian City, China. Chinese Journal of Applied Ecology, 2017, 28(9): 2849-2855] [30] 郑壮鹏, 赵思媛, 周非飞, 等. 亚洲树轮平均敏感度分布特征及其影响因素. 应用生态学报, 2019, 30(3): 805-813 [Zheng Z-P, Zhao S-Y, Zhou F-F, et al. Variations of mean sensitivity of tree rings in Asia and their influencing factors. Chinese Journal of Applied Ecology, 2019, 30(3): 805-813] [31] Gao J, Yang B, He M, et al. Intra-annual stem radial increment patterns of Chinese pine, Helan Mountains, northern Central China. Trees, 2019, 33: 751-763 |
[1] | LIU Yilin, REN Yue, GAO Guanglei, DING Guodong, ZHANG Ying, LIU Ye. Soil C:N:P stoichiometry in rhizosphere and non-rhizosphere of Pinus sylvestris var. mongolica forests [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 615-621. |
[2] | WANG Miao, WU Guoliang, ZHANG Rui, WANG Jiayi, WANG Yunpeng, HUANG Dazhuang, ZHOU Zhi-chun. Geographical provenance variation of growth and wood properties of 18-year-old Schima superba [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2337-2344. |
[3] | WANG Heng, WANG Xiao-xue, JIA Jianheng, ZHANG Zihang, GUO Mingming. Responses of radial growth of Larix principis-rupprechtii to abrupt warming [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2629-2636. |
[4] | GAO Xin, YANG Li-xin, CHEN Zhen-ju. Convolutional neural network tree species identification based on tree-ring radial section image features [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 47-57. |
[5] | LI Ying-hui, QI Gui-zeng, FENG Rong-rong, LIU Kang. Responses of radial growth of Pinus tabuliformis to climate change at the northern slopes of Qinling Mountains, China [J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2043-2050. |
[6] | GAO Xiang, ZHOU Yu, MENG Ping, PEI Song-yi, ZHANG Jin-song. Net ecosystem exchange of Pinus sylvestris var. mongolica plantation in the western Liaoning Province, China [J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1183-1190. |
[7] | CAO Yu-juan, SONG Zhen-hua, WU Zhi-tao, DU Zi-qiang. Spatio-temporal dynamics of gross primary productivity in China from 1982 to 2017 based on different datasets [J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2644-2652. |
[8] | WU Xue-ming, YU Xin-xiao, CHEN Li-hua, JIA Guo-dong, QIU Yun-xiao, PENG Xiu-wen. Effects of thinning intensity on the understory water-holding capacity of Pinus sylvestris var. mongolica plantation in the Bashang area of north China [J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2347-2354. |
[9] | AI Zhe, XU Ting-ting, LI Yuan-yuan, MA Fei. Characteristics and influence factors in leaf and soil carbon stable isotopes of Caragana jubata. [J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1744-1752. |
[10] | HAN Yan-gang, GAI Xue-rui, QIU Si-yu, ZHANG Yue, WANG Shou-le, ZHOU Li, YU Da-pao. Spatial and temporal variations of the responses of radial growth of Larix gmelinii to climate in the Daxing'anling Mountains of Northeast China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3397-3404. |
[11] | GUO Xue-mei, WANG Zhao-peng, ZHANG Nan, ZHANG Dong-you. Responses of radial growth of Pinus sylvestris var. mongolica and Larix gmelinii to climate change [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3405-3414. |
[12] | YANG Jing-wen, ZHANG Qiu-liang, SONG Wen-qi, ZHANG Xu, LI Zong-shan, ZHANG Yuan-dong, WANG Xiao-chun. Response differences of radial growth of Larix gmelinii and Pinus sylvestris var. mongolica to climate change in Daxing'an Mountains, Northeast China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3415-3427. |
[13] | MAO Yi-xin, ZHANG Hui-dong, WANG Rui-zhao, YAN Ting-wu, WEI Wen-jun, YUN Li-li, PAN Wen-li, YOU Wen-zhong. Responses of radial growth of Quercus mongolica to stand density and climatic factors in a mountainous area of eastern Liaoning Province, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3477-3486. |
[14] | LI Jing-ru, PENG Jian-feng, YANG Liu, CUI Jia-yue, LI Xuan, PENG Meng. Responses of radial growth of two coniferous species to climate factors in western Sichuan Plateau, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3512-3520. |
[15] | MENG Sheng-wang, YANG Feng-ting, DAI Xiao-qin, WANG Hui-min. Radial growth dynamics of Chinese fir and its response to seasonal drought [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3521-3530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||