[1] IPCC. Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013 [2] Cowan N, Bhatia A, Drewer J, et al. Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield. Agriculture, Ecosystems and Environment, 2021, 319: 107571 [3] Kirk G. The Biogeochemistry of Submerged Soils. Chi-chester, UK: John Wiley & Sons Inc., 2004 [4] 周文涛, 龙文飞, 毛燕, 等. 节水轻简栽培模式下增密减氮对双季稻田温室气体排放的影响. 应用生态学报, 2020, 31(8): 2604-2612 [5] 何竹, 许琛, 周贝贝, 等. 长期不施磷对稻田温室气体排放的影响. 应用生态学报, 2021, 32(3): 942-950 [6] Santoro AE, Buchwald C, Mcilvin MR, et al. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science, 2011, 333: 1282-1285 [7] Cai ZC, Xing GX, Yan XY, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil, 1997, 196: 7-14 [8] Xin S, Xiao X, Dong J, et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000-2017. Science of the Total Environment, 2020, 711: 135183 [9] Zou JW, Huang Y, Qin YM, et al. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Global Change Biology, 2009, 15: 229-242 [10] Zhu EY, Deng JS, Wang HQ, et al. Identify the optimization strategy of nitrogen fertilization level based on trade-off analysis between rice production and greenhouse gas emission. Journal of Cleaner Production, 2009, 239: 118060 [11] Maneepitak S, Ullah H, Datta A, et al. Effects of water and rice straw management practices on water savings and greenhouse gas emissions from a double rice paddy field in the central plain of Thailand. European Journal of Agronomy, 2019, 107: 18-29 [12] Raheem A, Zhang J, Huang J, et al. Greenhouse gas emissions from a rice-rice-green manure cropping system in South China. Geoderma, 2019, 353: 331-339 [13] 林文雄, 陈鸿飞, 张志兴, 等. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23(4): 392-401 [14] Huang JW, Wu JY, Chen HF, et al. Optimal management of nitrogen fertilizer in main rice and its carrying-over effect on ratoon rice under mechanized cultivation in Southwest China. Journal of Integrative Agriculture, 2022, 21: 351-364 [15] Lee CH, Park KD, Jung KY, et al. Effect of Chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agriculture, Ecosystems and Environment, 2010, 138: 343-347 [16] Lindau CW, Bollich PK, DeLaune RD, et al. Effect of rice variety on methane emission from Louisiana rice. Agriculture, Ecosystems and Environment, 1995, 54: 109-114 [17] Kim GW, Gutierrez-Suson J, Kim PJ. Optimum N rate for grain yield coincides with minimum greenhouse gas intensity in flooded rice fields. Field Crops Research, 2019, 237: 23-31 [18] Trinh MV, Tesfai M, Borrell A, et al. Effect of organic, inorganic and slow-release urea fertilisers on CH4 and N2O emissions from rice paddy fields. Paddy and Water Environment, 2017, 15: 317-330 [19] Huang X, Chen C, Qian H, et al. Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978. Journal of Cleaner Production, 2017, 142: 1629-1637 [20] 姜振辉, 杨旭, 刘益珍, 等. 春玉米-晚稻与早稻-晚稻种植模式碳足迹比较. 生态学报, 2019, 39(21): 8091-8099 [21] Wang ZB, Zhang HL, Lu XH, et al. Lowering carbon footprint of winter wheat by improving management practices in North China Plain. Journal of Cleaner Production, 2016, 112: 149-157 [22] Huang X, Chen C, Qian H, et al. Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978. Journal of Cleaner Production, 2017, 142: 1629-1637 [23] 陈中督, 徐春春, 纪龙, 等. 基于农户调查的长江中游地区双季稻生产碳足迹及其构成. 中国水稻科学, 2018, 32(6): 85-93 [24] Zhang XQ, Pu C, Zhao X, et al. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat-summer maize cropping system of the North China Plain. Ecological Indicators, 2016, 67: 821-829 [25] 陈中云, 闵航, 陈美慈, 等. 不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究. 生态学报, 2001, 21(9): 1498-1505 [26] 邱虎森, 苏以荣, 刘杰云, 等. 易利用态有机物质对水稻土甲烷排放的激发作用. 土壤, 2018, 50(3): 537-542 [27] 陈玉泉. 稻田甲烷的产生及其与环境的关系. 江苏农业科学, 2003, 31(3): 91-93 [28] 缪子梅, 俞双恩, 卢斌, 等. 基于结构方程模型的控水稻“需水量-光合量-产量”关系研究. 农业工程学报, 2013, 29(6): 91-98 [29] Ksa B, Gz A, Hya B, et al. Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields. Journal of Cleaner Production, 2021, 297: 126650 [30] 陈中督, 徐春春, 纪龙, 等. 2004—2014年南方稻区双季稻生产碳足迹动态及其构成. 应用生态学报, 2018, 29(11): 3669-3676 [31] Denier van der Gon HAC, Kropff MJ, Breemen NV, et al. Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 12021-12024 [32] 刘惠, 赵平, 王跃思, 等. 华南丘陵区农林复合生态系统稻田二氧化碳排放及其影响因素. 生态学杂志, 2006, 25(5): 471-476 [33] Cheng K, Pan G, Smith P, et al. Carbon footprint of China's crop production: An estimation using agro-statistics data over 1993-2007. Agriculture, Ecosystems and Environment, 2011, 142: 231-237 [34] 王兴, 赵鑫, 王钰乔, 等. 中国水稻生产的碳足迹分析. 资源科学, 2017, 39(4): 713-722 [35] 陈中督. 农作措施对双季稻田固碳减排效应与农户低碳技术采纳行为研究. 博士论文. 北京: 中国农业大学, 2017 [36] 徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响. 植物生态学报, 2007, 31(2): 175-188 |