[1] Yan YX, Dong XH, Li RR, et al. Wollastonite addition stimulates soil organic carbon mineralization: Evidences from 12 land-use types in subtropical China. Catena, 2023, 225: 107031 [2] 王芳娜, 朱飞飞, 李英华, 等. 硅酸盐矿物增强风化技术对水稻田植物-土壤系统固碳的影响. 应用生态学报, 2025, 35(10): 2733-2743 [3] Conley DJ. Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 2002, 16: 681-688 [4] Tréguer P, Nelson DM, van Bennekom AJ, et al. The silica balance in the world ocean: A reestimate. Science, 1995, 268: 375-379 [5] Struyf E, Conley DJ. Emerging understanding of the ecosystem silica filter. Biogeochemistry, 2012, 107: 9-18 [6] Gérard F, Mayer KU, Hodson MJ. Modelling the biogeo-chemical cycle of silicon in soils: Application to a temperate forest ecosystem. Geochimica et Cosmochimica Acta, 2008, 72: 741-758 [7] Puppe D, Höhn A, Kaczorek D, et al. How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil-plant system. Biogeosciences, 2017, 14: 5239-5252 [8] Derry LA, Kurtz AC, Ziegler K, et al. Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature, 2005, 433: 728-731 [9] Fraysse F, Pokrovsky OS, Meunier JD. Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochimica et Cosmochimica Acta, 2010, 74: 70-84 [10] Haynes RJ. A contemporary overview of silicon availabi-lity in agricultural soils. Journal of Plant Nutrition & Soil Science, 2014, 177: 831-844 [11] Carey JC, Fulweiler RW. Human appropriation of biogenic silicon: The increasing role of agriculture. Functional Ecology, 2016, 30: 1331-1339 [12] Struyf E, Smis A, van Damme S, et al. The Global biogeochemical silicon cycle. Silicon, 2009, 1: 207-213 [13] Vandevenne F, Struyf E, Clymans W, et al. Agricultural silica harvest: Have humans created a new loop in the global silica cycle? Frontiers in Ecology and the Environment, 2012, 10: 243-248 [14] Xia SP, Song ZL, Fan YR, et al. Spatial distribution patterns and controls of bioavailable silicon in coastal wetlands of China. Plant and Soil, 2023, 493: 187-205 [15] Struyf E, Smis A, Damme SV, et al. Historical land use change has lowered terrestrial silica mobilization. Nature Communications, 2010, 1: 129 [16] Zhang XD, Song ZL, Hao Q, et al. Storage of soil phytoliths and phytolith-occluded carbon along a precipita-tion gradient in grasslands of northern China. Geoderma, 2020, 364: 114200 [17] Struyf E, Smis A, Damme SV, et al. Historical land use change has lowered terrestrial silica mobilization. Nature Communications, 2010, 1: 129 [18] Carey JC, Fulweiler RW. Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry, 2012, 111: 125-138 [19] 苏州市人民政府. 苏州市城市总体规划(2007—2020): 苏州水系研究专题[EB/OL]. (2022-06-19)[2025-01-17]. https://wenku.baidu.com/view/a70a1725f28583d049649b6648d7c1c708a10b23.html?_wkts_=1759049800661&bdQuery [20] 中国科学院南京土壤研究所. 中国土壤数据库-土壤资源数据库[EB/OL]. (2010)[2025-01-17]. http://vdb3.soil.csdb.cn/ [21] 苏州市人民政府. 苏州市耕地轮作休耕的实施意见(试行)(苏府〔2017〕124号)[EB/OL] (2017-11-20)[2025-01-17]. https://www.suzhou.gov.cn/szsrmzf/gbzfwj/202207/ef8adc2dcd1749d18d26d5a4df8c3b51.sh-tml [22] Klotzbücher T, Leuther F, Marxen A, et al. Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines). Plant and Soil, 2015, 393: 177-191 [23] Sauer D, Saccone L, Conley DJ, et al. Review of metho-dologies for extracting plant: Available and amorphous Si from soils and aquatic sediments. Biogeochemistry, 2006, 80: 89-108 [24] Georgiadis A, Sauer D, Herrmann L, et al. Development of a method for sequential Si extraction from soils. Geoderma, 2013, 209-210: 251-261 [25] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业出版社, 2000 [26] Meunier JD, Keller C, Guntzer F, et al. Assessment of the 1% Na2CO3 technique to quantify the phytolith pool. Geoderma, 2014, 216: 30-35 [27] Ragueneau O, Tréguer P. Determination of biogenic silica in coastal waters: Applicability and limits of the alkaline digestion method. Marine Chemistry, 1994, 45: 43-51 [28] 苏州市统计局. 苏州统计年鉴-2022. 北京: 中国统计出版社, 2022 [29] 尹海峰. 不同水氮条件对水稻生长发育及稻田氮素渗漏淋溶的影响, 硕士论文. 南京: 南京农业大学, 2012 [30] 杨林林. 麦田土壤水分运移与有效性评价. 博士论文. 河南新乡: 中国农业科学院农田灌溉研究所, 2017 [31] Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science, 2006, 11: 392-397 [32] Tsujimoto Y, Muranaka S, Saito K, et al. Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Saharan Africa. Field Crops Research, 2014, 155: 1-9 [33] Yang XM, Song ZL, Qin ZL, et al. Phytolith-rich straw application and groundwater table management over 36 years affect the soil-plant silicon cycle of a paddy field. Plant and Soil, 2020, 454: 343-458 [34] Hughes HJ, Hung DT, Sauer D. Silicon recycling through rice residue management does not prevent silicon depletion in paddy rice cultivation. Nutrient Cycling in Agroecosystems, 2020, 118: 75-89 [35] Ma JF, Takahashi E. Brief history of silicon research in Japan: Birth of silicate fertilizer// Ma JF, Takahashi E, eds. Soil, Fertilizer, and Plant Silicon Research in Japan. Amsterdam: Elsevier, 2002: 1-3 [36] Desplanques V, Cary L, Mouret JC, et al. Silicon transfers in a rice field in Camargue (France). Journal of Geochemical Exploration, 2006, 88: 190-193 [37] 刘佳妮, 翟水晶, 邱思婷, 等. 闽江下游水体硅的组成及营养盐化学计量比. 应用生态学报, 2024, 34(8): 2205-2214 [38] Barão L, Clymans W, Vandevenne F, et al. Pedogenic and biogenic alkaline-extracted silicon distributions along a temperate land-use gradient. European Journal of Soil Science, 2014, 65: 693-705 [39] Alexandre A, Meunier JD, Colin F, et al. Plant impact on the biogeochemical cycle of silicon and related wea-thering processes. Geochimica et Cosmochimica Acta, 1997, 61: 677-682 [40] Blecker SW, McCulley RL, Chadwick OA, et al. Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical Cycles, 2006, 20, DOI: 10.1029/2006GB002690 [41] Makabe S, Kakuda KI, Sasaki Y, et al. Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan. Soil Science and Plant Nutrition, 2009, 55: 300-308 [42] Yang XM, Song ZL, van Zwieten L, et al. Spatial distribution of plant-available silicon and its controlling factors in paddy fields of China. Geoderma, 2021, 401: 115215 [43] Chirkes JD, Heredia OS, Alicia FC. Soluble silicon in differently textured mollisols of Argentina. Geoderma Regional, 2018, 15: e00191 [44] Yin LC, Zhang L, Yi YN, et al. Effects of long-term groundwater management and straw application on aggregation of paddy soils in subtropical China. Pedosphere, 2015, 25: 386-391 [45] Marxen A, Klotzbücher T, Jahn R, et al. Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant and Soil, 2016, 398: 153-163 [46] Bowden J, Posner A, Quirk J. Adsorption and charging phenomena in variable charge soils// Theng BKG, ed. Soils with Variable Charge. Lower Hutt, New Zealand: New Zealand Society of Soil Science, 1980: 147-166 [47] 杨丹, 刘鸣达, 姜峰, 等. 酸性和中性水田土壤施用硅肥的效应研究.Ⅰ. 对土壤pH、Eh及硅动态的影响. 农业环境科学学报, 2012, 31(4): 757-763 [48] Wickramasinghe DB, Rowell DL. The release of silicon from amorphous silica and rice straw in Sri Lankan soils. Biology and Fertility of Soils, 2006, 42: 231-240 [49] 广西壮族自治区市场监督管理局. 茶果园硅肥使用技术规程(DB45/T 2248—2020)[EB/OL]. (2020-12-28)[2025-01-17]. https://std.samr.gov.cn/db/search/stdDBDetailed?id=C57F4FAE143A3412E05397BE0A-0A00A1 [50] 安徽省质量技术监督局. 硅肥合理施用技术规程(DB 34/T 2847—2017)[EB/OL]. (2017-03-30)[2025-01-17]. https://dbba.sacinfo.org.cn/stdDetail/50e3a8a7d337f3f78f316304f9835ae592eb3c9f24d9e2d-876842a815bbc64c2 |