[1] 李奕霏, 肖谋良, 袁红朝, 等. CO2倍增对稻田土壤碳氮水解酶活性的影响. 中国环境科学, 2018, 38(9): 3474-3480 [2] 熊明彪, 田应兵, 雷孝章, 等. 小麦生长期内土壤养分与土壤酶活性变化及其相关性研究. 水土保持学报, 2003, 27(4): 27-30 [3] 张馨月, 白家韶, 韩雪, 等. 华北平原冬小麦田土壤胞外/内酶活性对长期CO2浓度升高的响应. 生态学报, 2023, 43(20): 8504-8515 [4] Zhang XY, Dong WY, Dai XQ, et al. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Science of the Total Environment, 2015, 536: 59-67 [5] 刘楚祺, 赵高坤, 邓小鹏, 等. 连作年限对植烟土壤养分和微生物量及胞外酶化学计量特征的影响. 云南农业大学学报: 自然科学, 2023, 38(3): 494-502 [6] 张灵菲, 马垒, 李玉东, 等. 有机物料与化肥长期配施对小麦玉米轮作潮土细菌群落和酶活性的影响. 中国农业科学, 2023, 56(19): 3843-3855 [7] 刘哲文, 郭丹丹, 常旭虹, 等. 追氮对弱筋小麦干物质、氮素积累及产量的影响. 麦类作物学报, 2023, 43(8): 1029-1038 [8] Jian SY, Li JW, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Bioche-mistry, 2016, 101: 32-43 [9] Jing X, Yang XX, Ren F, et al. Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem. Applied Soil Ecology, 2016, 107: 205-213 [10] 崔正勇, 李新华, 裴艳婷, 等. 氮磷配施对冬小麦干物质积累、分配及产量的影响. 西北农业学报, 2018, 27(3): 339-346 [11] 吕广德, 亓晓蕾, 张继波, 等. 中、高产型小麦干物质和氮素累积转运对水氮的响应. 植物营养与肥料学报, 2021, 27(9): 1534-1547 [12] 田中伟, 王方瑞, 戴廷波, 等. 小麦品种改良过程中物质积累转运特性与产量的关系. 中国农业科学, 2012, 45(4): 801-808 [13] Lyu XK, Liu Y, Li N, et al. Foliar applications of various nitrogen (N) forms to winter wheat affect grain protein accumulation and quality via N metabolism and remobilization. The Crop Journal, 2022, 10: 1165-1177 [14] Giacometti C, Cavani L, Baldoni G, et al. Microplate-scale fluorometric soil enzyme assays as tools to assess soil quality in a long-term agricultural field experiment. Applied Soil Ecology, 2014, 75: 80-85 [15] German DP, Weintraub MN, Grandy AS, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 2011, 43: 1387-1397 [16] 张甘霖, 龚子同. 土壤调查实验室分析方法. 北京: 科学出版社, 2012 [17] Ai L, Wu FZ, Fan XB, et al. Different effects of litter and root inputs on soil enzyme activities in terrestrial ecosystems. Applied Soil Ecology, 2023, 183: 104764 [18] Zhou XR, Chen XK, Yang K, et al. Vegetation restoration in an alpine meadow: Insights from soil microbial communities and resource limitation across soil depth. Journal of Environmental Management, 2024, 360: 121129 [19] Fujita K, Miyabara Y, Kunito T. Microbial biomass and ecoenzymatic stoichiometries vary in response to nutrient availability in an arable soil. European Journal of Soil Biology, 2019, 91: 1-8 [20] Ai C, Liang GQ, Sun JW, et al. Responses of extrace-llular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma, 2012, 173-174: 330-338 [21] Qaswar M, Jing H, Ahmed W, et al. Linkages between ecoenzymatic stoichiometry and microbial community structure under long-term fertilization in paddy soil: A case study in China. Applied Soil Ecology, 2021, 161: 103860 [22] 于洋, 张常仁, 杨雅丽, 等. 长期免耕和秸秆覆盖量对黑土碳氮含量及碳氮循环相关酶活性的影响. 应用生态学报, 2024, 35(3): 695-704 [23] Li S, Zhang SR, Pu YL, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage Research, 2016, 155: 289-297 [24] Yan BG, Sun Y, He GX, et al. Nitrogen enrichment affects soil enzymatic stoichiometry via soil acidification in arid and hot land. Pedobiologia, 2020, 81-82: 150663 [25] 魏亮, 汤珍珠, 祝贞科, 等. 水稻不同生育期根际与非根际土壤胞外酶对施氮的响应. 环境科学, 2017, 38(8): 3489-3496 [26] Li J, Cooper JM, Lin ZA, et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology, 2015, 96: 75-87 [27] Sinsabaugh RL, Shah JJF. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, evolution, and Systematics, 2012, 43: 313-343 [28] 张露, 张水清, 任科宇, 等. 不同肥力潮土的酶活计量比特征及其与微生物量的关系. 中国农业科学, 2020, 53(20): 4226-4236 [29] Mori T, Aoyagi R, Kitayama K, et al. Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? Soil Biology and Biochemistry, 2021, 160: 108363 [30] 韩子琛, 郭强, 夏允, 等. 亚热带三种林分土壤酶活性和酶化学计量比特征. 应用生态学报, 2024, 35(6): 1501-1508 [31] Wang SH, Zhou KJ, Mori T, et al. Effects of phospho-rus and nitrogen fertilization on soil arylsulfatase activity and sulfur availability of two tropical plantations in southern China. Forest Ecology and Management, 2019, 453: 117613 [32] 马悦, 田怡, 牟文燕, 等. 北方麦区小麦产量与籽粒氮磷钾含量对监控施钾和土壤速效钾的响应. 中国农业科学, 2022, 55(16): 3155-3169 [33] 蒋龙刚, 黄明, 宋庆赟, 等. 基于土壤有机质含量推荐的旱地冬小麦施氮量研究. 中国农业科学, 2020, 53(10): 2020-2033 [34] 聂浩亮, 黄少辉, 杨军芳, 等. 氮肥管理及氮素形态对强筋冬小麦产量、品质及氮肥利用效率的影响. 麦类作物学报, 2024, 44(12): 1590-1598 [35] 陈智坤, 郝雅珺, 任英英, 等. 长期定位施肥对两种小麦耕作系统土壤肥力的影响. 土壤, 2021, 53(1): 105-111 [36] 李志强, 齐鹏, 王雅芝, 等. 氮磷添加对黄土高原小麦土壤养分含量及生态化学计量特征的影响. 中国农学通报, 2024, 40(10): 95-102 [37] 吴光磊, 郭立月, 崔正勇, 等. 氮肥运筹对晚播冬小麦氮素和干物质积累与转运的影响. 生态学报, 2012, 32(16): 5128-5137 [38] 杨君林, 车宗贤, 冯守疆, 等. 氮素营养对旱地小麦群体生长特性的调控. 甘肃农业科技, 2018(11): 65-68 [39] 孙彦铭, 杨振立, 杜晓东, 等. 农田养分调控对冀中南冬小麦生育期群体动态和养分浓度的影响. 河北农业科学, 2016, 20(3): 44-48 [40] 房英, 刘增付, 杨胜堂, 等. 拔节期追磷对小麦生长及产量的影响. 中国土壤与肥料, 2007(4): 56-58 [41] 冷鹏, 王建青, 谭云燕, 等. 大气CO2和O3浓度升高对水稻根际土壤胞外酶活性的影响. 应用生态学报, 2023, 34(8): 2185-2193 |