
Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (11): 3523-3534.doi: 10.13287/j.1001-9332.202512.033
• Reviews • Previous Articles Next Articles
YANG Guiqiao1,2,3, ZHAN Juan2,3, ZHANG Sheng1, WANG Jianmei1, PANG Xueyong2,3*
Received:2025-04-24
Accepted:2025-10-05
Online:2025-11-18
Published:2026-06-18
YANG Guiqiao, ZHAN Juan, ZHANG Sheng, WANG Jianmei, PANG Xueyong. Phosphate-solubilizing mechanisms and ecological functions of cold-tolerant phosphate-solubilizing microorganisms[J]. Chinese Journal of Applied Ecology, 2025, 36(11): 3523-3534.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202512.033
| [1] Li HP, Han QQ, Liu QM, et al. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 2023, 272: 127375 [2] Cordell D, White S. Life's bottleneck: Sustaining the world's phosphorus for a food secure future. Annual Review of Environment and Resources, 2014, 39: 161-188 [3] Gong H, Yin Y, Chen Z, et al. A dynamic optimization of soil phosphorus status approach could reduce phosphorus fertilizer use by half in China. Nature Communications, 2025, 16: 97 [4] 夏围围, 张泽霖, 邹萌萌, 等. 培养基和代次影响土壤可培养解磷菌多样性评估. 土壤学报, 2024, 61(6): 1680-1693 [5] Yan J, Lou L, Bai W, et al. Phosphorus deficiency is the main limiting factor for re-vegetation and soil microorganisms in Mu Us Sandy Land, Northwest China. Science of the Total Environment, 2023, 900: 165770 [6] 梅新兰, 闪安琪, 蒋益, 等. 适应玉米的溶磷细菌筛选及其对玉米生长的影响. 土壤学报, 2016, 53(2): 502-509 [7] Timofeeva A, Galyamova M, Sedykh S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants, 2022, 11: 2119 [8] 吕俊, 于存. 一株高效溶磷伯克霍尔德菌的筛选鉴定及对马尾松幼苗的促生作用. 应用生态学报, 2020, 31(9): 2923-2934 [9] Wu T, Wang C, Han B, et al. Emerging roles of inositol pyrophosphates in signaling plant phosphorus status and phytohormone signaling. Plant and Soil, 2024, 505: 127-145 [10] Djodjic F, Bergstrom L, Schmieder F, et al. Soils potentially vulnerable to phosphorus losses: Speciation of inorganic and organic phosphorus and estimation of leaching losses. Nutrient Cycling in Agroecosystems, 2023, 127: 225-245 [11] 孙健, 王亚艺, 张鑫鹏, 等. 青海地区解磷微生物的筛选及对小油菜生长的影响. 应用生态学报, 2023, 34(1): 221-228 [12] 渠露露, 彭长连, 李淑彬. 一株溶植酸磷类芽孢杆菌的分离筛选及对水稻幼苗的促生作用. 应用生态学报, 2020, 31(1): 326-332 [13] 余松灿, 王循睿, 马铭, 等. 多糖微生物菌液对油菜吸收养分和土壤氮磷淋失的影响. 中国土壤与肥料, 2021(5): 245-251 [14] Silva LID, Pereira MC, Carvalho AMXD, et al. Phosphorus-solubilizing microorganisms: A key to sustainable agriculture. Agriculture, 2023, 13: 462 [15] 王同, 孔令雅, 焦加国, 等. 红壤溶磷菌的筛选及溶磷机制. 土壤学报, 2014, 51(2): 373-380 [16] Cheng Y, Narayanan M, Shi X, et al. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Science of the Total Environment, 2023, 901: 166468 [17] Shaffique S, Khan MA, Wani SH, et al. Biopriming of maize seeds with a novel bacterial strain SH-6 to enhance drought tolerance in south Korea. Plants, 2022, 11: 1674 [18] Kour D, Rana KL, Kaur T, et al. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101501 [19] Zolfaghari R, Rezaei K, Fayyaz P, et al. The effect of indigenous phosphate-solubilizing bacteria on Quercus brantii seedlings under water stress. Sustainable Fores-try, 2021, 40: 733-747 [20] Ahmad I, Ahmad M, Hussain A, et al. Integrated use of phosphate-solubilizing Bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. strain IA16: A promising approach for improving cotton growth. Folia Microbiolo-gica, 2021, 66: 115-125 [21] 张美珍. 耐盐碱溶磷菌对大豆生长和根际微生态的影响. 硕士论文. 黑龙江大庆: 黑龙江八一农垦大学, 2024 [22] 周妍, 王丽娜, 张美珍, 等. 盐碱土加沙后接种溶磷菌对绿豆根际土壤细菌多样性的影响. 山东农业科学, 2022, 54(6): 73-81 [23] 张美珍, 王丽娜, 刘权, 等. 耐盐碱溶磷菌的筛选鉴定及其在大豆生长中的功能验证. 河南农业科学, 2022, 51(5): 34-44 [24] 张亚楠. 高盐环境中根际溶磷菌的分离及其对玉米促生功能研究. 硕士论文. 天津: 天津大学, 2020 [25] Jin T, Ren J, Li Y, et al. Plant growth-promoting effect and genomic analysis of the P. putida LWPZF isolated from C. japonicum rhizosphere. AMB Express, 2022, 12: 101 [26] Chen H, Zhang J, Tang L, et al. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environment International, 2019, 127: 395-401 [27] Kumar A, Guleria S, Mehta P, et al. Plant growth-promoting traits of phosphate solubilizing bacteria isolated from Hippophae rhamnoides L. (sea-buckthorn) growing in cold desert Trans-Himalayan Lahul and Spiti regions of India. Acta Physiologiae Plantarum, 2015, 37: 48 [28] Kour D, Yadav AN. Alleviation of cold stress in wheat with psychrotrophic phosphorus solubilizing Acinetobacter rhizosphaerae EU-KL44. Brazilian Microbiology, 2023, 54: 371-383 [29] Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 2011, 162: 346-361 [30] Yoshida S. Fundamentals of Rice Crop Science. Los Baños: International Rice Research Institute, 1981: 195-203 [31] Vassileva M, Serrano M, Bravo V, et al. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Applied Microbiology and Biotechnology, 2010, 85: 1287-1299 [32] Rizvi A, Zaidi A, Ameen F, et al. Heavy metal induced stress on wheat: Phytotoxicity and microbiological mana-gement. Royal Society of Chemistry Advances, 2020, 10: 38379-38403 [33] Rizvi A, Ahmed B, Khan MS, et al. Psychrophilic bacterial phosphate-biofertilizers: A novel extremophile for sustainable crop production under cold environment. Microorganisms, 2021, 9: 2451 [34] Luis AY. Cold-tolerant phosphate-solubilizing microorganisms and agriculture development in mountainous regions of the world. Cham, Germany: Springer International Publishing, 2014: 113-135 [35] Mohan SS, Sahab YL, Kumar SS, et al. Phosphate solubilizing ability of two Arctic Aspergillus niger strains. Polar Research, 2011, 30: 7283 [36] Rinu K, Pandey A. Temperature-dependent phosphate solubilization by cold- and pH-tolerant species of Aspergillus isolated from Himalayan soil. Mycoscience, 2010, 51: 263-271 [37] Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent Pseudomonads from the rhizosphere of sea buckthorn growing in the cold deserts of Himalayas. Current Microbiology, 2008, 56: 73-79 [38] Valle ECD, López JÁ, Liu J, et al. Development of a cold-active microbial compound biofertilizer on the improvement for rice (Oryza sativa L.) tolerance at low-temperature. Rhizosphere, 2022, 24: 100586 [39] Mukhia S, Kumar A, Kumari P, et al. Psychrotrophic plant beneficial bacteria from the glacial ecosystem of Sikkim Himalaya: Genomic evidence for the cold adaptation and plant growth promotion. Microbiological Research, 2022, 260: 127049 [40] Li M, Wang J, Yao T, et al. Isolation and characterization of cold-adapted PGPB and their effect on plant growth promotion. Microbiology and Biotechnology, 2021, 31: 1218-1230 [41] 巩文峰, 邢瑜琪, 卓玛曲措, 等. 一株色季拉山长鞭红景天根际溶磷菌的分离、鉴定及其低温适应性分析. 南方农业学报, 2018, 49(2): 280-286 [42] 刘晓婷, 姚拓. 高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究. 草业学报, 2022, 31(8): 178-187 [43] 柴加丽, 姚拓. 高寒草甸多枝黄耆根际促生菌特性研究与鉴定. 中国草地学报, 2022, 44(10): 68-74 [44] Gulati A, Sharma N, Vyas P, et al. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Archives of Microbiology, 2010, 192: 975-983 [45] Rajwar J, Chandra R, Suyal DC, et al. Comparative phosphate solubilizing efficiency of psychrotolerant Pseudomonas jesenii MP1 and Acinetobacter sp. ST02 against chickpea for sustainable hill agriculture. Biologia, 2018, 73: 793-802 [46] 张晗昱, 李丹丹, 郑瑾, 等. 青藏高原多年冻土区解磷菌筛选及抗逆能力评价. 微生物学报, 2024, 64(6): 1876-1890 [47] Silva AV, Oliveira AJ, Tanabe ISB, et al. Antarctic lichens as a source of phosphate-solubilizing bacteria. Extremophiles, 2021, 25: 181-191 [48] Yarzábal LA, Monserrate L, Buela L, et al. Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biology, 2018, 41: 2343-2354 [49] Lei Y, Kuai Y, Guo M, et al. Phosphate-solubilizing microorganisms for soil health and ecosystem sustainability: A forty-year scientometric analysis (1984-2024). Frontiers in Microbiology, 2025, 16, DOI: 10.3389/fmicb.2025.1546852 [50] Pandey A, Palni LMS. Isolation of Pseudomonas corrugata from Sikkim Himalaya. Microbiology and Biotechnology, 1998, 14: 411-413 [51] Dasila H, Sah VK, Jaggi V, et al. Cold-tolerant phosphate-solubilizing Pseudomonas strains promote wheat growth and yield by improving soil phosphorous (P) nutrition status. Frontiers in Microbiology, 2023, 14: 1135693 [52] 武燕茹, 杨文权, 刘家庆, 等. 1株矮生嵩草根际高效溶磷菌的筛选、鉴定与促生效果研究. 草地学报, 2025, 33(2): 410-418 [53] 王振龙, 姚拓, 李明源, 等. 若尔盖高寒草地优势牧草植物根际促生菌的筛选及特性. 草业科学, 2023, 40(2): 319-328 [54] 李明源. 祁连山高寒草地优势牧草耐冷促生菌特性及促生机理研究. 博士论文. 兰州: 甘肃农业大学, 2024 [55] 景文杰, 全占军, 韩煜, 等. 重金属污染土壤修复中的根际效应研究进展. 环境工程技术学报, 2022, 12(1): 153-160 [56] 郑曼曼, 王超, 沈仁芳. 碳酸钙和根际作用对酸性红壤解磷微生物丰度的影响. 土壤, 2020, 52(4): 704-709 [57] Puranik S, Singh SK, Shukla L. An Insight to Cold-adapted Microorganisms and Their Importance in Agriculture. Singapore: Springer Singapore, 2022: 379-411 [58] Raymond JA, Fritsen C, Shen K. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiology Ecology, 2007, 61: 214-221 [59] Quinn PJ. Effects of temperature on cell membranes. Symposia of the Society for Experimental Biology, 1988, 42: 237-258 [60] Arvizu GJL, Hernández MA, Aguilar JRP, et al. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: Physiology of phytopathogenic bacteria. BMC Microbiology, 2013, 13: 81 [61] Monsalves MT, Ollivet-Besson GP, Amenabar MJ, et al. Isolation of a psychrotolerant and UV-C-resistant bacterium from elephant island, antarctica with a highly thermoactive and thermostable catalase. Microorganisms, 2020, 8: 95 [62] Wang DZ, Jin YN, Ding XH, et al. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants. Biochemistry, 2017, 82: 1103-1117 [63] Castellano I, Di MA, Ruocco MR, et al. Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: Biochemical characterization and identification of a highly reactive cysteine residue. Biochimie, 2006, 88: 1377-1389 [64] 于鹏, 刘静雯. 微生物适冷酶及其应用研究新进展. 微生物学杂志, 2014, 34(2): 77-81 [65] Rivkina E, Laurinavichius K, McGrath J, et al. Microbial life in permafrost. Advances in Space Research, 2004, 33: 1215-1221 [66] Panoff JM, Corroler D, Thammavongs B, et al. Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic gram-positive bacterium, Enterococcus faecalis JH2-2. Bacteriology, 1997, 179: 4451-4454 [67] Nichols CAM, Guezennec J, Bowman JP. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: A review. Marine Biotechnology, 2005, 7: 253-271 [68] Qin G, Zhu L, Chen X, et al. Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoaltero-monas sp. SM9913. Microbiology, 2007, 153: 1566-1572 [69] Shivaji S, Prakash JSS. How do bacteria sense and respond to low temperature? Archives of Microbiology, 2010, 192: 85-95 [70] Shivaji S, Chattopadhyay MK, Ray MK. Bacteria and yeasts of Schirmacher Oasis, Antarctica: taxonomy, biochemistry and molecular biology. Proceedings of the 15th Symposium on Polar Biology, Tokyo, 1994: 173-184 [71] Rawat P, Das S, Shankhdhar D, et al. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Soil Science and Plant Nutrition, 2021, 21: 49-68 [72] Baumann K, Jung P, Samolov E, et al. Biological soil crusts along a climatic gradient in Chile: Richness and imprints of phototrophic microorganisms in phosphorus biogeochemical cycling. Soil Biology and Biochemistry, 2018, 127: 286-300 [73] Adeleke R, Nwangburuka C, Oboirien B. Origins, roles and fate of organic acids in soils: A review. South African. Botany, 2017, 108: 393-406 [74] Jaiswal SK, Mohammed M, Ibny FYI, et al. Rhizobia as a source of plant growth-promoting molecules: Potential applications and possible operational mechanisms. Frontiers in Sustainable Food Systems, 2021, 4: 619676 [75] 陈哲, 吴敏娜, 秦红灵, 等. 土壤微生物溶磷分子机理研究进展. 土壤学报, 2009, 46(5): 925-931 [76] Joshi S, Gangola S, Jaggi V, et al. Functional characterization and molecular fingerprinting of potential phosphate solubilizing bacterial candidates from Shisham rhizosphere. Scientific Reports, 2023, 13: 7003 [77] Wu X, Rensing C, Han D, et al. Genome-resolved meta-genomics reveals distinct phosphorus acquisition strategies between soil microbiomes. Msystems, 2022, 7: e01107-21 [78] Ghoreshizadeh S, Calvo-Peña C, Ruiz-Muñoz M, et al. Pseudomonas taetrolens ULE-PH5 and Pseudomonas sp. ULE-PH6 isolated from the hop rhizosphere increase phosphate assimilation by the plant. Plants, 2024, 13: 402 [79] Thampi M, Dhanraj ND, Prasad A, et al. Phosphorus solubilizing microbes (PSM): Biological tool to combat salinity stress in crops. Symbiosis, 2023, 91: 15-32 [80] Neal AL, Blackwell M, Akkari E, et al. Phylogenetic distribution, biogeography and the effects of land mana-gement upon bacterial non-specific acid phosphatase gene diversity and abundance. Plant and Soil, 2018, 427: 175-189 [81] Li J, Xie T, Zhu H, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404: 115376 [82] Udaondo Z, Duque E, Daddaoua A, et al. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries. Environmental Microbiology, 2020, 22: 3561-3571 [83] Apel AK, Sola-Landa A, Rodríguez-García A, et al. Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of phoP to their promoter regions. Microbiology, 2007, 153: 3527-3537 [84] Yan H, Wang T, Wang H, et al. Screening and identification of cold-tolerant phosphorus and potassium solubilizing bacteria and their growth-promoting effects on soybean in cold regions. Agronomy, 2025, 15: 40 [85] 黄臣. 达乌里胡枝子根际解磷菌的筛选、鉴定及其促生作用. 硕士论文. 山西晋中: 山西农业大学, 2023 [86] Katiyar V, Goel R. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiological Research, 2003, 158: 163-168 [87] Balcazar W, Rondón J, Rengifo M, et al. Bioprospecting glacial ice for plant growth promoting bacteria. Microbiological Research, 2015, 177: 1-7 [88] 蔺宝珺, 杨文权, 赵帅, 等. 高寒草甸植物根际溶磷菌的筛选鉴定及其溶磷与促生效果. 草地学报, 2022, 30(11): 3132-3139 [89] Jones DL. Organic acids in the rhizosphere: A critical review. Plant and Soil, 1998, 205: 25-44 [90] 万水霞, 李帆, 王静, 等. 溶磷菌剂对玉米幼苗生长及根际土壤细菌群落结构和磷素形态的影响. 中国土壤与肥料, 2024(2): 80-88 [91] Moreno R, Rojo F. Features of pseudomonads growing at low temperatures: Another facet of their versatility. Environmental Microbiology Reports, 2014, 6: 417-426 [92] 姬文秀, 李虎林, 冷雪, 等. 产ACC脱氨酶人参内生细菌的分离和促生特性分析. 吉林农业大学学报, 2019(2): 168-174 [93] Forghani AH, Almodares A, Ehsanpour AA. Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor (L.) Moench cv. Sofra). Applied Biological Chemistry, 2018, 61: 113-124 [94] 陈鸿, 杜金华, 马瑞娟, 等. 外源赤霉素(GA3)对不同桃品种(系)果实品质的影响. 果树学报, 2025, 42(4): 775-789 [95] Sasirekha B, Srividya B. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agriculture and Natural Resources, 2016, 50: 250-256 [96] Farina R, Beneduzi A, Ambrosini A, et al. Diversity of plant growth-promoting rhizobacteria communities asso-ciated with the stages of canola growth. Applied Soil Ecology, 2012, 55: 44-52 [97] Bao X, Lu H, Zhao J, et al. Screening and identification of two novel phosphate-solubilizing Pyrenochaetopsis tabarestanensis strains and their role in enhancing phosphorus uptake in rice. Frontiers in Microbiology, 2025, 15: 1494859 [98] 龙建廷, 乔伟, 许赵佳, 等. 青藏高原高寒矿区植被恢复技术研究进展. 中国饲料, 2023(15): 138-143 [99] Jiang ZM, Zhang BH, Sun HM, et al. Properties of Modestobacter deserti sp. nov., a kind of novel phosphate-solubilizing Actinobacteria inhabited in the desert biological soil crusts. Frontiers in Microbiology, 2021, 12: 742798 [100] Yin H, Wheeler E, Phillips RP. Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology and Biochemistry, 2014, 78: 213-221 [101] Liu J, Xu W, Zhang Q, et al. OsPHR2-mediated recruitment of Pseudomonadaceae enhances rice phosphorus uptake. Plant Communications, 2024, 5: 100930 [102] 董羽嘉, 何艳慧, 武占省. 微胶囊化植物根际促生菌剂的研究进展. 生物加工过程, 2021, 19(4): 404-412 [103] Jiang M, Delgado-Baquerizo M, Yuan MM, et al. Home-based microbial solution to boost crop growth in low-fertility soil. New Phytologist, 2023, 239: 752-765 [104] 韩梅, 李天华, 彭帅, 等. 微生物肥料的包埋固定化研究. 植物营养与肥料学报, 2012, 18(4): 999-1005 [105] Gruskiene R, Bockuviene A, Sereikaite J. Microencapsulation of bioactive ingredients for their delivery into fermented milk products: A review. Molecules, 2021, 26: 4601 |
| [1] | YAO Longjie, ZHANG Donglin, ZHU Danli, ZHU Zongbin, PAN Weitao, YUE Bangrui. Spatial prioritization in territorial ecological restoration: Theoretical foundation, assessment framework, and planning issues [J]. Chinese Journal of Applied Ecology, 2025, 36(9): 2885-2898. |
| [2] | REN Haiyan, YUAN Yuan, ZHAO Wenduo, LI Anting, LI Yuxin, SONG Xiaohui. Advances in the application of stress-resilient and growth-enhancing seed coating and pelleting technology for ecological restoration [J]. Chinese Journal of Applied Ecology, 2025, 36(8): 2563-2570. |
| [3] | WANG Zhiyao, ZHONG Yujun, WANG Yongfeng, XIE Ninghui, ZHANG Ying, JIANG Zhi-yang, SHI Rongjiu, LIANG Xiaolong. Ecological functions of plant-beneficial microbiomes and their application prospects in sustainable agriculture [J]. Chinese Journal of Applied Ecology, 2025, 36(5): 1553-1566. |
| [4] | CHEN Kunlun, LIN Rumeng, CHEN Nenyu, HE Lina, HE Qingjun. Landscape ecological risk assessment and ecological security pattern construction in Chuxiong Yi Autonomous Prefecture, Yunnan Province, China [J]. Chinese Journal of Applied Ecology, 2025, 36(11): 3467-3478. |
| [5] | KAN Heng, DING Guanqiao, GUO Jie, LIU Jiang, OU Minghao. Identification of key areas for ecological restoration of territorial space based on ecological security pattern analysis: A case study of the Taihu Lake city cluster [J]. Chinese Journal of Applied Ecology, 2024, 35(8): 2217-2227. |
| [6] | GAO Mengwen, HU Yecui, LIU Xinwei, LIANG Mengyin, KONG Fanjie, BAI Yuping. Delineation of water ecological restoration zoning from a multi-dimensional perspective: A case study in Hechi, a typical karst region [J]. Chinese Journal of Applied Ecology, 2024, 35(6): 1661-1670. |
| [7] | CHEN Junru, JIANG Zihao, XIAO Bo, YANG Yuhang, DOU Weiqiang, CAO Yousong. Rainwater harvesting effect of biocrusted soil-surfaces and the key influencing factors in the hilly region of Chinese Loess Plateau [J]. Chinese Journal of Applied Ecology, 2024, 35(6): 1645-1652. |
| [8] | ZHONG Rui, WANG Jiaoyue, XU Tingting, XI Fengming, HAN Mei, HU Qinqin, BING Longfei, YIN Yan. Assessment of carbon reduction and sink enhancement potential of photovoltaic+mining ecological restoration model [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1379-1387. |
| [9] | DOU Hanmei, ZHAO Ruifeng, CHEN Xidong, SHI Jing, WANG Jingfa, LIU Fushou. Identification of priority areas for territorial space ecological restoration in arid area of Northwest China: A case study of Zhangye City in Heihe River basin [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 469-479. |
| [10] | HUA Zhe, ZI Haiyun, LIAO Yangwenke, TANG Luozhong, LI Xiaogang. Research advances in functional processes and factors of rhizosphere microorganisms in regulating forest growth. [J]. Chinese Journal of Applied Ecology, 2024, 35(11): 3190-3198. |
| [11] | LIN Yachao, GUO Xiaoping, LI Wenye, YANG Fan, LUO Chao, HAO Jiahang, WU Yuxi. Effects of coal mine waste dump on soil seed bank and vegetation distribution pattern [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 95-101. |
| [12] | XIAO Wu, RUAN Linlin, YUE Wenze, ZHOU Yan, ZHANG Lijia, HU Yueming. Construction of a multi-scale effectiveness evaluation system for ecological restoration and protection of territorial space [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2566-2574. |
| [13] | NAN Yicong, YANG Yonggang, WANG Zeqing, ZHOU Yang, SU Qiaomei. Effects of coal gangue on soil property and plant growth in mining area [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1253-1262. |
| [14] | LIANG Jun , WU Tian, ZHOU Yongdong, HU Yangjie, XU Kaida, ZHANG Tao. Spawning substrates of cuttlefish: Type, function, and application [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 535-546. |
| [15] | YU Guirui, HAO Tianxiang, YANG Meng. Ecosystem principles and main issues in regional ecological restoration and environmental governance in China [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 289-304. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||