[1] Zhang QY, Zhu JX, Wang QF, et al. Soil acidification in China’s forests due to atmospheric acid deposition from 1980 to 2050. Science Bulletin, 2022, 67: 914-917 [2] 张福锁. 我国农田土壤酸化现状及影响. 民主与科学, 2016(6): 26-27 [3] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施. 中国科学院院刊, 2018, 33(2): 160-167 [4] Bolan S, Padhye LP, Mulligan CN, et al. Surfactant-enhanced mobilization of persistent organic pollutants: Potential for soil and sediment remediation and unintended consequences. Journal of Hazardous Materials, 2023, 443: 130189 [5] Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth and Environment, 2022, 4: 4-18 [6] Li Y, Cui S, Chang SX, et al. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-ana-lysis. Journal of Soils and Sediments, 2019, 19: 1393-1406 [7] 宋文涛, 宁川川, 黄美琳, 等. 秸秆生物炭对两种典型土壤的养分特性及硅的化学形态的影响. 生态科学, 2023, 42(5): 123-132 [8] Amoakwah E, Shim J, Kim S, et al. Impact of silicate and lime application on soil fertility and temporal changes in soil properties and carbon stocks in a temperate ecosystem. Geoderma, 2023, 433: 116431 [9] Xu Z, Zhang SW, Lakshmanan P, et al. Mitigation of soil acidification is critical for reducing GHG emission and improving soil quality, crop yield and farm economic benefits: Evidence from a global meta-analysis. Field Crops Research, 2025, 322: 109757 [10] 胡漫, 曾全超, 周全, 等. 集约化种植柑橘土壤细菌群落多样性与生态系统多功能性的耦合机制研究. 土壤学报, 2025, 62(4): 1197-1209 [11] Pokharel P, Ma ZL, Chang SX. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar, 2020, 2: 65-79 [12] 韩光明, 孟军, 曹婷, 等. 生物炭对菠菜根际微生物及土壤理化性质的影响. 沈阳农业大学学报, 2012, 43(5): 515-520 [13] 李源钊, 盛浩, 尹泽润, 等. 双季稻田土壤微生物群落对连续5年施有机肥和石灰的响应差异. 土壤通报, 2022, 53(2): 482-491 [14] Filep T, Szili-Kovács T. Effect of liming on microbial biomass carbon of acidic arenosols in pot experiments. Plant, Soil and Environment, 2010, 56: 268-273 [15] Jenkins JR, Viger M, Arnold EC, et al. Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. Global Change Biology Bioenergy, 2017, 9: 591-612 [16] Ding ZG, Zhou JJ, Yang P, et al. Accelerated exploration of high-performance multi-principal element alloys: Data-driven high-throughput calculations and active learning method. Materials Research Letters, 2023, 11: 670-677 [17] Xu N, Tan GC, Wang HY, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 2016, 74: 1-8 [18] Wang WH, Shi FF, Du JQ, et al. Soil factors that contribute to the abundance and structure of the diazotrophic community and soybean growth, yield, and quality under biochar amendment. Chemical and Biological Technologies in Agriculture, 2023, 10: 54 [19] Shi L, Guo ZH, Peng C, et al. Immobilization of cad-mium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment. Ecotoxicology and Environmental Safety, 2019, 171: 425-434 [20] Jian SY, Li JW, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 2016, 101: 32-43 [21] 王雪, 佟丙辛, 孙梦宇, 等. 全国和区域尺度深耕对玉米产量影响的Meta分析. 应用生态学报, 2025, 36(1): 152-160 [22] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998 [23] Kumar Y, Ren W, Tao HY, et al. Impact of biochar amendment on soil microbial biomass carbon enhancement under field experiments: A meta-analysis. Biochar, 2025, 7: 2 [24] Zhang NH, Xing JM, Wei LJ, et al. The potential of biochar to mitigate soil acidification: A global meta-analysis. Biochar, 2025, 7: 49 [25] 黄翔, 陈钢, 洪娟, 等. 耕地土壤pH测定方法比较研究. 湖北农业科学, 2021, 60(19): 106-109 [26] 黄肖, 王龙兴, 徐添靖, 等. 基于Meta分析的不同耕作措施对黄土高原旱地麦田土壤有机碳的影响. 应用生态学报, 2024, 35(10): 2725-2732 [27] 何宁波, 高静, 孙楠, 等. 施肥对我国农田土壤易氧化有机碳影响的整合分析. 中国土壤与肥料, 2024(5): 8-16 [28] 黄路路, 周慧玲, 王启帆, 等. 陆地生态系统植物碳、氮和磷含量对增温的响应: Meta分析. 应用生态学报, 2024, 35(9): 2527-2534 [29] 郭慧婷, 高静, 张强, 等. 有机肥对我国酸性和碱性土壤pH的影响差异及原因. 应用与环境生物学报, 2024, 30(3): 496-503 [30] Dai ZM, Zhang XJ, Tang C, et al. Potential role of biochars in decreasing soil acidification: A critical review. Science of the Total Environment, 2017, 581-582: 601-611 [31] Wang ZW, Liu SR, Ruan YZ, et al. Comparison of biochar- and lime-adjusted pH changes in N2O emissions and associated microbial communities in a tropical tea plantation soil. Agronomy, 2023, 13: 1144 [32] Hou JB, Pugazhendhi A, Sindhu R, et al. An assessment of biochar as a potential amendment to enhance plant nutrient uptake. Environmental Research, 2022, 214: 113909 [33] Navarrete AA, Kuramae EE, Hollander MD, et al. Acidobacterial community responses to agricultural mana-gement of soybean in Amazon forest soils. FEMS Microbiology Ecology, 2013, 83: 607-621 [34] Sun W, Li SW, Zhang GY, et al. Effects of climate change and anthropogenic activities on soil pH in grassland regions on the Tibetan Plateau. Global Ecology and Conservation, 2023, 45: 02532 [35] 刘娇娴, 崔骏, 刘洪宝, 等. 土壤改良剂改良酸化土壤的研究进展. 环境工程技术学报, 2022, 12(1): 173-184 [36] Kemmitt S, Wright D, Goulding K, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 2006, 38: 898-911 [37] White PJ, Greenwood DJ. Properties and management of cationic elements for crop growth// Gregory PJ, Nortcliff S, eds. Soil Conditions and Plant Growth. Malden, MA, USA: Blackwell Publishing, 2013: 160-194 [38] Zhang QZ, Dijkstra FA, Liu XR, et al. Effects of biochar on soil microbial biomass after four years of conse-cutive application in the North China Plain. PLoS One, 2014, 9: 102062 [39] 黄巧义, 林碧珊, 饶国良, 等. 秸秆还田配施石灰对酸性水稻土有机碳及碳库管理指数的影响. 环境科学, 2023, 44(10): 5813-5822 [40] Cifu M, Lu XN, Chen ZH, et al. Long-term effects of lime application on soil acidity and crop yields on a red soil in Central Zhejiang. Plant and Soil, 2004, 265: 101-109 [41] 胡明慧, 赵建琪, 王玄, 等. 自然增温对南亚热带森林土壤微生物群落与有机碳代谢功能基因的影响. 生态学报, 2022, 42(1): 359-369 [42] Wang CQ, Kuzyakov Y. Soil organic matter priming: The pH effects. Global Change Biology, 2024, 30: 17349 [43] 田小平, 王磊, 王菡, 等. 秸秆与秸秆生物炭还田对土壤微生物群落结构的影响. 工业微生物, 2017, 47(6): 1-6 [44] 陈红梅, 钱笑杰, 赵琳, 等. 生石灰对蜜柚果园强酸性土壤化学性质和细菌群落结构的影响. 福建农业学报, 2023, 38(1): 99-108 [45] 陶玲, 李晓莉, 朱建强, 等. 施用生石灰对精养池塘浮游细菌群落结构和多样性的影响. 水生生物学报, 2017, 41(2): 399-406 [46] 赵卉鑫, 马鑫, 张瑞喜, 等. 聚丙烯酰胺和生物炭共施对土壤细菌群落、理化因子和玉米产量的影响. 微生物学通报, 2023, 50(3): 1136-1148 [47] 韩锐, 魏红, 康璐一, 等. 外源生物炭对黑土土壤微生物功能多样性的影响. 东北林业大学学报, 2016, 44(5): 67-69 [48] Li SN, Ji XH, Chao C, et al. Effects of increasing lime application rates on microbial diversity and community structure in paddy soils. Applied Soil Ecology, 2021, 161: 103837 [49] 张仲富, 王禹童, 艾静, 等. 钾肥对甘蔗根际微生物多样性和群落构建过程的影响. 应用生态学报, 2025, 36(2): 526-536 [50] Hagh-Doust N, Mikryukov V, Anslan S, et al. Effects of nitrogen deposition on carbon and nutrient cycling along a natural soil acidity gradient as revealed by metagenomics. New Phytologist, 2023, 238: 2607-2620 [51] 王义祥, 黄家庆, 叶菁, 等. 生物炭对酸化茶园土壤性状和细菌群落结构的影响. 植物营养与肥料学报, 2020, 26(11): 1967-1977 [52] Shen Z, Han TF, Huang J, et al. Soil organic carbon regulation by pH in acidic red soil subjected to long-term liming and straw incorporation. Journal of Environmental Management, 2024, 367: 122063 [53] Khan Z, Zhang KK, Khan MN, et al. Effects of biochar persistence on soil physiochemical properties, enzymatic activities, nutrient utilization, and crop yield in a three-year rice-rapeseed crop rotation. European Journal of Agronomy, 2024, 154: 127096 [54] 林小兵, 周利军, 武琳, 等. 三种含钙物质对南方酸性镉污染土壤调酸降镉效应. 土壤与作物, 2025, 14(2): 227-234 [55] Smith P. Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 2016, 22: 1315-1324 |