[1] Levy-Booth DJ, Prescott CE, Grayston SJ. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Bio-logy & Biochemistry, 2014, 75: 11-25 [2] Pajares S, Bohannan BJM. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Frontiers in Microbiology, 2016, 7: 1045 [3] Adair KL, Schwartz E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microbial Ecology, 2008, 56: 420-426 [4] Hayatsu M, Tago K, Uchiyama I, et al. An acid-tole-rant ammonia-oxidizing γ-proteobacterium from soil. The ISME Journal, 2017, 11: 1130-1141 [5] Hink L, Nicol GW, Prosser JI. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environmental Microbiology, 2016, 9: 4829-4837 [6] Jia ZJ, Conrad R. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 2009, 11: 1658-1671 [7] Xia W, Zhang C, Zeng X, et al. Autotrophic growth of nitrifying community in an agricultural soil. The ISME Journal, 2011, 5: 1226-1236 [8] Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, et al. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108: 15892-15897 [9] Zhang LM, Hu HW, Shen JP, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME Journal, 2012, 6: 1032-1045 [10] Petersen DG, Blazewicz SJ, Firestone M, et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environmental Microbiology, 2012, 14: 993-1008 [11] Townsend AR, Cleveland CC, Houlton BZ, et al. Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment, 2011, 9: 9-17 [12] Compton JE, Watrud LS, Porteous LA, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 2004, 196: 143-158 [13] He JZ, Shen JP, Zhang LM, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 2007, 9: 2364-2374 [14] Humbert S, Zopfi J, Tarnawski SE. Abundance of anammox bacteria in different wetland soils. Environmental Microbiology Reports, 2012, 4: 484-490 [15] Johnson DW, Curtis PS. Effects of forest management on soil C and N storage: Meta-analysis. Forest Ecology and Management, 2001, 140: 227-238 [16] 王邵军, 王红, 李霁航. 热带森林不同演替阶段蚂蚁巢穴的分布特征及其影响因素. 生物多样性, 2016, 24(8): 916-921 [17] 方丽娜, 杨效东, 杜杰. 土地利用方式对西双版纳热带森林土壤微生物生物量碳的影响. 应用生态学报, 2011, 22(4): 837-844 [18] Wang SJ, Wang H, Li JH, et al. Ants can exert a diverse effect on soil carbon and nitrogen pools in a Xishuangbanna tropical forest. Soil Biology and Biochemistry, 2017, 113: 45-52 [19] 张昆凤, 王邵军, 王平, 等. 蚂蚁筑巢对热带次生林土壤N2O排放季节动态的影响. 应用生态学报, 2023, 34(5): 1218-1224 [20] 曹乾斌, 王邵军, 陈闽昆, 等. 不同恢复阶段热带森林土壤nirS型反硝化微生物群落结构及多样性特征. 生态学报, 2021, 41(2): 626-636 [21] Vance ED, Brookes PC, Jenkinson BD. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 1987, 19: 703-707 [22] Li CY, Hu H, Feng JY, et al. Diversity and abundance of ammonia-oxidizing bacteria (AOB) revealed by PCR amplification of amoA gene in a polyacrylamide transportation system of an oilfield. International Biodeterioration & Biodegradation, 2016, 115: 110-118 [23] Fierer N, Bradford MA, Jackson RB. Toward an ecolo-gical classification of soil bacteria. Ecology, 2007, 88: 1354-1364 [24] Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal, 2009, 3: 992-1000 [25] Lu M, Ren Y, Wang S, et al. Contribution of soil variables to bacterial community composition following land use change in Napahai plateau wetlands. Journal of Environmental Management, 2019, 246: 77-84 [26] Klotz MG, Stein LY. Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiology Letters, 2008, 278: 146-156 [27] Stein LY, Campbell MA, Klotz MG. Energy-mediated vs. ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium Nitrosococcus oceani. Frontiers in Microbiology, 2013, 4: 277 [28] Malchair S, Carnol M. AOB community structure and richness under European beech, sessile oak, Norway spruce and Douglas-fir at three temperate forest sites. Plant & Soil, 2013, 366: 521-535 [29] Ozdemir B, Mertoglu B, Yapsakli K, et al. Investigation of nitrogen converters in membrane bioreactor. Journal of Environmental Science and Health, Part A, 2011, 46: 500-508 [30] 李永春, 刘卜榕, 郭帅, 等. 亚热带不同林分土壤氨氧化菌群落特征. 应用生态学报, 2014, 25(1): 125-131 [31] Malchair S, Carnol M. Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biology & Biochemistry, 2009, 41: 831-839 [32] 朱平, 陈仁升, 宋耀选, 等. 祁连山不同植被类型土壤微生物群落多样性差异. 草业学报, 2015, 24(6): 75-84 [33] 刘妍霁, 刘子恺, 金圣圣, 等. 亚热带森林土壤氨氧化微生物和反硝化微生物功能基因丰度对氮磷输入的响应. 应用生态学报, 2023, 34(3): 639-646 [34] 刘灵芝, 马诗涵, 李秀玲, 等. 长期施肥对土壤氨氧化微生物的影响. 应用生态学报, 2020, 31(5): 1459-1466 [35] 张健. 连续施氮对土壤氨氧化菌及细菌群落结构的影响. 硕士论文. 兰州: 甘肃农业大学, 2018 [36] Wang SJ, Li JH, Zhang Z, et al. The contributions of underground-nesting ants to CO2 emission from tropical forest soils vary with species. Science of the Total Environment, 2018, 630: 1095-1102 [37] Tourna M, Freitag TE, Nicol GW, et al. Growth, acti-vity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 2008, 10: 1357-1364 [38] Horz HP, Barbrook A, Field CB, et al. Ammonia-oxidizing bacteria respond to multifactorial climate change. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 15136-15141 |