
Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (11): 3237-3244.doi: 10.13287/j.1001-9332.202511.008
• Original Articles • Previous Articles Next Articles
ZHANG Xingzi, WANG Bingxin, GUO Mingming*
Received:2025-08-17
Accepted:2025-09-23
Online:2025-11-18
Published:2025-12-15
ZHANG Xingzi, WANG Bingxin, GUO Mingming. Effect of meteorological droughts in different seasons on the radial growth of Abies recurvata[J]. Chinese Journal of Applied Ecology, 2025, 36(11): 3237-3244.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202511.008
| [1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2021 [2] 张雅婷, 叶旺敏, 熊德成, 等. 杉木幼树光合特性与生长的季节变化及其对土壤增温的响应. 应用生态学报, 2024, 35(1): 195-202 [3] Sarah R, Madeleine A, Lisa G, et al. Climate change effects on biodiversity, ecosystems, ecosystem services and natural resource management in the United States. Science of the Total Environment, 2020, 733: 137782 [4] Piao SL, Zhang XP, Chen AP, et al. The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China Earth Sciences, 2019, 62: 1551-1563 [5] 贾建恒, 侯树航, 次柯凡, 等. 不同经营模式华北落叶松的径向生长及对干旱事件的响应. 应用生态学报, 2025, 36(6): 1708-1714 [6] 袁超峰, 王文志, 吴喆虹, 等. 健康与衰退樟子松和杨树径向生长响应气候及其生态弹性差异. 应用生态学报, 2025, 36(2): 411-417 [7] 张一博, 郭亮娜, 李江荣, 等. 心材腐烂对色季拉山急尖长苞冷杉径向生长的影响. 应用生态学报, 2024, 35(11): 2951-2958 [8] Marchand W, Depardieu C, Campbell EM, et al. Long-term temporal divergence in post-drought resilience decline between deciduous and evergreen tree species. Global Change Biology, 2025, 31: e70330 [9] 刘亚玲, 信忠保, 李宗善, 等. 近40年河北坝上地区杨树人工林径向生长对气候变化的响应差异. 生态学报, 2020, 40(24): 9108-9119 [10] Gebauer R, Plichta R, Urban J, et al. The resistance and resilience of European beech seedlings to drought stress during the period of leaf development. Tree Phy-siology, 2020, 40: 1147-1164 [11] Jensen AM, Eckert D, Carter KR, et al. Springtime drought shifts carbon partitioning of recent photosynthates in 10-year-old Picea mariana trees, causing restricted canopy development. Frontiers in Forests and Global Change, 2021, 3: 601046 [12] Vieira J, Moura M, Nabais C, et al. Seasonal adjustment of primary and secondary growth in maritime pine under simulated climatic changes. Annals of Forest Science, 2019, 76: 84 [13] Wan YF, Yu PT, Wang YH, et al. More tree growth reduction due to consecutive drought and its legacy effect for a semiarid larch plantation in Northwest China. Journal of Forestry Research, 2024, 35: 39 [14] Lv PC, Rademacher T, Huang XR, et al. Prolonged drought duration, not intensity, reduces growth recovery and prevents compensatory growth of oak trees. Agricultural and Forest Meteorology, 2022, 326: 109183 [15] 刘顺, 许格希, 陈淼, 等. 坡向对川西亚高山土壤酶活性和微生物养分限制的影响. 应用生态学报, 2023, 34(11): 2993-3002 [16] 郭明明, 张远东, 王晓春, 等. 川西米亚罗林区主要树木生长对气候响应的差异. 应用生态学报, 2015, 26(8): 2237-2243 [17] Fritts H. Tree rings and climate. Amsterdam, Netherlands: Elsevier, 2012 [18] 申佳艳, 李帅锋, 黄小波, 等. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程. 林业科学, 2020, 56(6): 1-11 [19] 孙昊慷, 韩佳轩, 贾建恒, 等. 不同林龄及径级樟子松径向生长对干旱事件的响应. 应用生态学报, 2024, 35(11): 2942-2950 [20] 中华人民共和国国家质量监督检验检疫总局. 中国国家标准化管理委员会. 气象干旱等级(GB/T 20481—2017). 北京: 中国标准出版社, 2017 [21] Lloret F, Keeling EG, Sala A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011, 120: 1909-1920 [22] Gazol A, Camarero JJ, Anderegg WR, et al. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 2017, 26: 166-176 [23] 肖健宇, 张文艳, 牟玉梅, 等. 树木年轮揭示的东灵山主要树种间干旱耐受性差异. 应用生态学报, 2021, 32(10): 3487-3496 [24] 李君, 徐巾喻, 石松林, 等. 气候变化对濒危植物长叶云杉径向生长的影响. 生态学报, 2025, 45(14): 6808-6821 [25] Shi JF, Cook ER, Li JB, et al. Unprecedented January-July warming recorded in a 178-year tree-ring width chronology in the Dabie Mountains, southeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 381: 92-97 [26] López-Moreno JI, Revuelto J, Gilaberte M, et al. The effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. Theoretical and Applied Climatology, 2014, 117: 207-219 [27] Guo MM, Zhang YD, Liu SR, et al. Divergent growth between spruce and fir at alpine treelines on the east edge of the Tibetan Plateau in response to recent climate warming. Agricultural and Forest Meteorology, 2019, 276-277: 107631 [28] 徐宁, 王晓春, 张远东, 等. 川西米亚罗林区不同海拔岷江冷杉生长对气候变化的响应. 生态学报, 2013, 33(12): 3742-3751 [29] Dai A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008. Journal of Geophysical Research. Atmospheres, 2011, 116: D12115 [30] Fajstavr M, Horáček P, Foltýnová L, et al. Xylogenesis controlled by water potential gradients within the soil-plant-atmosphere continuum in one of the most widespread conifers. Agricultural and Forest Meteorology, 2025, 372: 110699 [31] 马玥, 苏宝玲, 韩艳刚, 等. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 2021, 32(2): 513-520 [32] Vieira J, Rossi S, Campelo F, et al. Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agricultural and Forest Meteorology, 2013, 180: 173-181 [33] 王兆鹏, 张冬有, 张同文, 等. 大兴安岭北部不同海拔樟子松树轮宽度对气候因子的响应. 生态学报, 2024, 44(17): 7646-7661 [34] 杨绕琼, 范泽鑫, 李宗善, 等. 滇西北玉龙雪山不同海拔云南松(Pinus yunnanensis)径向生长对气候因子的响应. 生态学报, 2018, 38(24): 8983-8991 [35] Li XX, Liang EY, Gričar J, et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 2017, 62: 804-812 [36] 魏靖轩, 许昆, 张远东, 等. 川西康定云冷杉径向生长对气候变化响应的差异. 生态学报, 2024, 44(23): 10906-10914 [37] Zhao ZJ, Kang DW, Guo WX, et al. Climate sensitivity of purple cone spruce (Picea purpurea) across an altitudinal gradient on the eastern Tibetan Plateau. Dendrochronologia, 2019, 56: 125586 [38] 张慧, 付培立, 林友兴, 等. 滇西北白马雪山长苞冷杉和大果红杉年内径向生长动态及其对环境因子的响应. 应用生态学报, 2022, 33(11): 2881-2888 [39] 雷帅, 张劲松, 孟平, 等. 中国北部不同地点樟子松人工林径向生长对气候响应的差异. 生态学报, 2020, 40(13): 4479-4492 [40] Hacke UG, Stiller V, Sperry JS, et al. Cavitation fatigue: Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiology, 2001, 125: 779-786 [41] Gao LL, Gou XH, Deng Y, et al. Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. Trees, 2017, 31: 393-404 [42] Miranda JC, Calderaro C, Cocozza C, et al. Wood anatomical responses of European beech to elevation, land use change, and climate variability in the Central Apennines, Italy. Frontiers in Plant Science, 2022, 13: 855741 [43] Måren IE, Karki S, Prajapati C, et al. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? Journal of Arid Environments, 2015, 121: 112-123 [44] 申静霞, 李迈和, 于飞海, 等. 川西云杉幼苗非结构性碳水化合物对土壤温度和水分变化的响应. 生态学报, 2021, 41(2): 503-512 [45] 杨开轩. 青藏高原东北部青海云杉树木径向生长对气候变化的响应. 博士论文. 西宁: 青海师范大学, 2024 [46] 吴祥定. 树木年轮与气候变化. 北京: 气象出版社, 1990 [47] Liu XS, Nie YQ, Luo TX, et al. Seasonal shift in climatic limiting factors on tree transpiration: Evidence from sap flow observations at alpine treelines in southeast Tibet. Frontiers in Plant Science, 2016, 7: 1018 [48] Polle A, Chen SL, Eckert C, et al. Engineering drought resistance in forest trees. Frontiers in Plant Science, 2019, 9: 1875 [49] Doolotkeldieva TD, Bekturganova BS, Bobusheva ST. Low temperature and vegetation effects on the soil bacterial communities structure in high mountainous and cold biotopes in Kyrgyzstan. Applied Ecology & Environmental Research, 2022, 20: 3793-3815 [50] Liu ZQ, Wei ZJ, Jiang J, et al. Adaptability of tree water use to elevation changes: A case study of a mixed forest in Northern China. Journal of Hydrology, 2022, 613: 128407 [51] Knüver T, Bär A, Ganthaler A, et al. Recovery after long-term summer drought: Hydraulic measurements reveal legacy effects in trunks of Picea abies but not in Fagus sylvatica. Plant Biology, 2022, 24: 1240-1253 |
| [1] | SHANG Xiaoyan, ZHANG Xiao, WEN Shuo, HAN Hui, ZHANG Risheng, BAO Changliang, XU Chuangjun, SHI Zhongjie. Intra-annual radial growth of Pinus sylvestris var. mongolica plantations with different stand densities and its influencing factors in Horqin Sandy Land, China [J]. Chinese Journal of Applied Ecology, 2025, 36(9): 2719-2728. |
| [2] | CHEN Jiangbo, ZHAO Yuanyuan, DING Guodong, WANG Xuelin, DONG Peng, LIU Yadan, LU Jiaxue. Changes in normalized difference vegetation index in the Yarlung Tsangpo River Basin and its response to climatic factors [J]. Chinese Journal of Applied Ecology, 2025, 36(9): 2797-2804. |
| [3] | JIA Jianheng, HOU Shuhang, CI Kefan, GUO Mingming, FU Lihua, ZHANG Yan. Radial growth of Larix principis-rupprechtii and responses to drought events under different forest management models [J]. Chinese Journal of Applied Ecology, 2025, 36(6): 1708-1714. |
| [4] | ZHANG Yixue, FAN Zexin, FU Peili, ZHANG Hui, Dujie Citan, HE Zhenghua. Stem radial growth of dominant subalpine coniferous species and their responses to moisture variability in Northwest Yunnan, China [J]. Chinese Journal of Applied Ecology, 2025, 36(4): 1043-1052. |
| [5] | SU Qihua, ZHENG Yonghong, HU Zhengsheng, LIAO Huihui, LU Chengyu. Response of tree-ring images in different bands to climatic factors. [J]. Chinese Journal of Applied Ecology, 2025, 36(2): 403-410. |
| [6] | YUAN Chaofeng, WANG Wenzhi, WU Zhehong, SU Yong, LUO Lingzhuo. Differences in radial growth responses to climate and ecological resilience between healthy and declining Pinus sylvestris var. mongolica and Populus L. [J]. Chinese Journal of Applied Ecology, 2025, 36(2): 411-417. |
| [7] | LI Xueting, YANG Liangjie, YANG Yongchun, LI Yanan. Analysis on coupling and coordination of urbanization and ecological resilience in Hexi Corridor Economic Belt, China. [J]. Chinese Journal of Applied Ecology, 2025, 36(2): 547-558. |
| [8] | LIANG Zhenman, LI Qi, LI Jinbao, Tsun Fung Au, ZHANG Xu, GAO Cong, LI Teng. Responses of radial growth of Populus cathayana to climate change in the western Sichuan Plateau, China [J]. Chinese Journal of Applied Ecology, 2025, 36(10): 3033-3042. |
| [9] | WANG Yikun, JIA Weiwei, CHEN Dongsheng, LI Dandan, LI Zelin. Construction of universal taper equation of Larix kaempferi in different climatic regions [J]. Chinese Journal of Applied Ecology, 2025, 36(1): 86-94. |
| [10] | YAN Huiyue, ZENG Xiaomin, XUE Yu, LIU Xiaohong. Research progress on physiological processes-based tree-ring width models of Vaganov-Shashkin (VS)and VS-Lite [J]. Chinese Journal of Applied Ecology, 2024, 35(8): 2256-2266. |
| [11] | DU Yingjun, LI Shijie, WANG Li, YANG Shuai, JIA Xinying, TIAN Guangyu, ZENG Fansuo, XIN Ying. Responses of radial growth of Fraxinus mandshurica from different provenances to climate at Maoershan in Northeast China [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1159-1168. |
| [12] | ZHANG Zihang, WANG Heng, JIA Jianheng, SUN Haokang, HAN Jiaxuan, GUO Mingming. Responses of radial growth of Larix principis-rupprechtii at different densities to drought events [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1169-1176. |
| [13] | LIU Ze, LI Jun, SHI Songlin, YANG Rui, LUO Wenwen, MA Yilin, BIE Xiaojuan, WANG Guoyan. Response of radial growth of different timberline species to climate change in Yading Nature Reserve, Sichuan, China [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1177-1186. |
| [14] | ZHANG Xinyu, GAO Lushuang, LIU Kexiang, QIN Li, ZHANG Ruibo, HAN Xinyu, ZHAO Bingqian. Growth decline characteristics of Picea schrenkiana at different altitudes in Yili River Basin, western Tian-shan Mountains, Xinjiang, China [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1196-1204. |
| [15] | LI Jun, LIU Ze, WANG Pai, YANG Rui, SHI Fengming, DENG Jie, WANG Guoyan, SHI Songlin. Response of radial growth of Pinus wallichiana to climate change in Mount Qomolangma, Tibet, China [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1205-1213. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||