[1] 徐春春, 纪龙, 陈中督, 等. 中国水稻生产发展的绿色趋势. 生命科学, 2018, 30(10): 1146-1154 [2] Yu X, Xu L, Yuan S, et al. Resource use efficiencies, environmental footprints and net ecosystem economic benefit of direct-seeded double-season rice in central China. Journal of Cleaner Production, 2023, 393: 136249 [3] Cui ZL, Zhang HY, Chen XP, et al. Pursuing sustai-nable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366 [4] 陈松文, 刘天奇, 曹凑贵, 等. 水稻生产碳中和现状及低碳稻作技术策略. 华中农业大学学报, 2021, 40(3): 3-12 [5] 曲潇琳, 任意, 王红叶, 等. 我国耕地质量主要性状30年变化情况报告. 中国农业综合开发, 2020(5): 25-26 [6] Jiang Y, Kees Jan VG, Huang S, et al. Higher yields and lower methane emissions with new rice cultivars. Global Change Biology, 2017, 23: 4728-4738 [7] 林文雄, 陈鸿飞, 张志兴, 等. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23(4): 392-401 [8] 方福平, 程式华. 水稻科技与产业发展. 农学学报, 2018, 8(1): 92-98 [9] 姚柳杨, 赖煜, 赵敏娟. 农业碳交易促进农民增收的路径研究. 华中农业大学学报, 2024, 43(3): 9-16 [10] Lin WX. Developmental status and problems of rice ratooning. Journal of Integrative Agriculture, 2019, 18: 246-247 [11] Chen H, Yao FF, Yang YC, et al. Progress and cha-llenges of rice ratooning technology in Fujian Province, China. Crop and Environment, 2023, 2: 121-125 [12] Qian HY, Zhu XC, Huang S, et al. Greenhouse gas emissions and mitigation in rice agriculture. Nature Reviews Earth & Environment, 2023, 4: 716-732 [13] Li RC, Tian YG, Wang F, et al. Optimizing the rate of straw returning to balance trade-offs between carbon emission budget and rice yield in China. Sustainable Production and Consumption, 2024, 47: 166-177 [14] Ren XJ, Cui KH, Deng ZM, et al. Ratoon rice cropping mitigates the greenhouse effect by reducing CH4 emi-ssions through reduction of biomass during the ratoon season. Plants, 2023, 12: 3354 [15] Zou JN, Pang ZQ, Li Z, et al. The underlying mechanism of variety-water-nitrogen-stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting. Journal of Integrative Agriculture, 2024, 23: 806-823 [16] 林文雄, 翁佩莹, 林文芳, 等. 中国机收再生稻研究现状与展望. 应用生态学报, 2024, 35(3): 827-836 [17] 林志敏, 李洲, 翁佩莹, 等. 再生稻田温室气体排放特征及碳足迹. 应用生态学报, 2022, 33(5): 1340-1351 [18] Tang JC, Liu TQ, Yang J, et al. Current status of carbon neutrality in Chinese rice fields (2002-2017) and strategies for its achievement. Science of the Total Environment, 2022, 842: 156713 [19] 魏甲彬, 徐华勤, 周玲红, 等. “双季稻-冬闲田”生态系统碳交换动态变化及其影响因素. 农业环境科学学报, 2018, 37(5): 1035-1044 [20] Ceschia E, Béziat P, Dejoux JF, et al. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment, 2010, 139: 363-383 [21] Zhao F, Yang P, Gao QZ, et al. Effects of the long-term rice expansion on ecosystem carbon budget in the typical agricultural area of Northeast China. Sustainable Production and Consumption, 2024, 52: 613-623 [22] Mandal UK, Bhardwaj AK, Lama TD, et al. Net ecosystem exchange of carbon, greenhouse gases, and energy budget in coastal lowland double cropped rice ecology. Soil and Tillage Research, 2021, 212: 105076 [23] 邓思. 再生稻生产现状调查及分析. 硕士论文. 武汉: 华中农业大学, 2024 [24] Huang JW, Pan YP, Chen HF, et al. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Research, 2020, 258: 107962 [25] Lin FF, Rensing C, Pang ZQ, et al. Metabolomic analysis reveals differential metabolites and pathways involved in grain chalkiness improvement under rice ratooning. Field Crops Research, 2022, 283: 108521 [26] Wang WQ, He A, Jiang GL, et al. Ratoon rice techno-logy: A green and resource-efficient way for rice production. Advances in Agronomy, 2020, 159: 135-167 [27] Yuan S, Yang C, Yu X, et al. On-farm comparison in grain quality between main and ratoon crops of ratoon rice in Hubei Province, Central China. Journal of the Science of Food and Agriculture, 2022, 102: 7259-7267 [28] Li JY, Qin B, Lan CJ, et al. Rhizosphere microecological mechanism of carbon sequestration and its emission mitigation in rice ratooning. Agriculture, Ecosystems & Environment, 2025, 381: 109406 [29] Qian HY, Yuan ZQ, Chen NN, et al. Legacy effects cause systematic underestimation of N2O emission factors. Nature Communications, 2025, 16: 2775 [30] Yoshida S, Forno DA, Cock JH. Laboratory Manual for Physiological Studies of Rice. Los Baños, Laguna, Phi-lippines: International Rice Research Institute, 1971 [31] Zou JN, Xu HL, Lan CJ, et al. Regulation of photoassimilate transportation and nitrogen uptake to decrease greenhouse gas emissions in ratooning rice with higher economic return by optimized nitrogen supplies. Field Crops Research, 2024, 312: 109385 [32] Huang W, Wu JF, Pan XH, et al. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China. Journal of Integrative Agriculture, 2021, 20: 236-247 [33] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627 [34] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013 [35] 陈曙, 赵秋芳, 陈宏良, 等. 玉米蔗糖合成酶基因家族的全基因组鉴定及表达分析. 西南农业学报, 2019, 32(11): 2479-2485 [36] 刘建超. 高温对水稻籽粒淀粉粒径分布以及蔗糖降解、贮藏蛋白积累代谢的影响. 硕士论文. 杭州: 浙江大学, 2019 [37] 施伟, 朱国永, 孙明法, 等. 水稻籽粒灌浆的影响因子及其机制研究进展. 中国农学通报, 2020, 36(8): 1-7 [38] Chen T, Weng PY, Lan CJ, et al. Studies and prospectives of mechanically harvested ratooning rice in China. Technology in Agronomy, 2024, 4: e015 [39] Kwon Y, Lee JY, Choi J, et al. Loss-of-function gs3 allele decreases methane emissions and increases grain yield in rice. Nature Climate Change, 2023, 13: 1329-1333 [40] Su J, Hu C, Yan X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature, 2015, 523: 602-606 [41] Hu J, Bettembourg M, Xue LH, et al. A low-methane rice with high-yield potential realized via optimized carbon partitioning. Science of the Total Environment, 2024, 920: 170980 [42] 宋嘉敏, 龚彦超, 任丽平. 稻田温室气体排放的影响因素研究进展. 现代农业科技, 2024(24): 106-109 [43] 张卫建, 尚子吟, 张俊, 等. 农业温室气体排放统计核算体系的规范化建设. 中国农业科学, 2023, 56(22): 4467-4477 |