欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2023, Vol. 34 ›› Issue (4): 913-920.doi: 10.13287/j.1001-9332.202304.011

• 黑土地保护与农业可持续发展专栏 • 上一篇    下一篇

长期免耕对黑土氮磷硫循环微生物功能潜力的影响

高燕1,2, 梁爱珍1,2*, 黄丹丹1, 张延1,2, 张旸1,2, 王阳1, 张士秀1, 陈学文1   

  1. 1中国科学院东北地理与农业生态研究所黑土地保护与利用全国重点实验室, 长春 130102;
    2中国科学院大学, 北京 100049
  • 收稿日期:2022-10-21 接受日期:2023-02-09 出版日期:2023-04-15 发布日期:2023-10-15
  • 通讯作者: *E-mail: liangaizhen@iga.ac.cn
  • 作者简介:高 燕, 女, 1994年生, 博士研究生。主要从事土壤碳循环研究。E-mail: gaoyan@iga.ac.cn
  • 基金资助:
    国家自然科学基金项目(41877095,41771206)和中国科学院“黑土粮仓”A类先导专项(XDA28080200)

Effects of long-term no-tillage on the functional potential of microorganisms involved in the nitrogen, phosphorus and sulfur cycles of black soil

GAO Yan1,2, LIANG Aizhen1,2*, HUANG Dandan1, ZHANG Yan1,2, ZHANG Yang1,2, WANG Yang1, ZHANG Shixiu1, CHEN Xuewen1   

  1. 1State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-10-21 Accepted:2023-02-09 Online:2023-04-15 Published:2023-10-15

摘要: 探究不同耕作方式对黑土氮(N)、磷(P)、硫(S)循环功能微生物丰度及组成的影响,对黑土可持续利用具有重要意义。本研究基于吉林省长春市为期8年的定位试验,对免耕(NT)和传统耕作(CT)下不同土层黑土N、P、S循环功能微生物丰度和组成及其驱动因素进行分析。结果表明: 与CT相比,NT显著增加了0~20 cm土层土壤含水量(WC)和微生物生物量碳(MBC)。NT显著增加了0~20 cm土层与N、P和S循环功能相关的编码基因丰度:包括编码氧化亚氮还原酶基因nosZ、固氮酶基因nifH和脲酶基因ureC的丰度,有机磷矿化过程关键基因phnKphoD、编码吡咯喹啉醌合成酶基因ppqC和外切多聚磷酸酯酶基因ppX的丰度,以及硫氧化过程关键基因soxYyedZ的丰度。方差分解分析和冗余分析结果表明,土壤基本特性是N、P、S循环功能微生物组成的主要影响因素(总解释率为28.1%),并且耕作方式导致的土壤MBC和WC变化是黑土N、P、S循环微生物功能潜力最主要的驱动因子。综上,长期免耕可通过影响土壤环境间接增加土壤特定微生物功能基因丰度,本研究从分子生物学角度阐明免耕可以作为改善土壤健康和维持农业绿色发展的有效耕作措施。

关键词: 免耕, 秸秆还田, 生物地球化学循环, 功能基因, 微生物元素循环定量芯片(QMEC)

Abstract: Understanding the effects of different tillage practices on functional microbial abundance and composition in nitrogen (N), phosphorus (P) and sulfur (S) cycles are essential for the sustainable utilization of black soils. Based on an 8-year field experiment located in Changchun, Jilin Province, we analyzed the abundance and composition of N, P and S cycling microorganisms and their driving factors in different depths of black soil under no til-lage (NT) and conventional tillage (CT). Results showed that compared with CT, NT significantly increased soil water content (WC) and microbial biomass carbon (MBC) at soil depth of 0-20 cm. Compared with CT, NT significantly increased the abundances of functional and encoding genes related to N, P and S cycling, including the nosZ gene encoding N2O reductase, the ureC gene performing organic nitrogen ammoniation, the nifH gene encoding nitrogenase ferritin, the functional genes phnK and phoD driving organic phosphorus mineralization, the encoding pyrroloquinoline quinone synthase ppqC gene and the encoding exopolyphosphate esterase ppX gene, and the soxY and yedZ genes driving sulfur oxidation. The results of variation partitioning analysis and redundancy analysis showed that soil basic properties were the main factors affecting the microbial composition of N, P and S cycle functions (the total interpretation rate was 28.1%), and that MBC and WC were the most important drivers of the functional potential of soil microorganisms in N, P and S cycling. Overall, long-term no tillage could increase the abundance of functional genes of soil microorganisms by affecting soil environment. From the perspective of molecular biology, our results elucidated that no tillage could be used as an effective soil management measure to improve soil health and maintain green agricultural development.

Key words: no tillage, residue returned, biogeochemical cycling, functional genes, quantitative microbial element cycling (QMEC)