应用生态学报 ›› 2020, Vol. 31 ›› Issue (10): 3568-3578.doi: 10.13287/j.1001-9332.202010.026
周春丽1,2, 李以康1*, 曹广民1, 朋措吉1,2, 宋明华3, 徐兴良3, 周华坤1, 林丽1
收稿日期:
2020-04-21
接受日期:
2020-08-12
出版日期:
2020-10-15
发布日期:
2021-04-15
通讯作者:
* E-mail: liyikang501@163.com
作者简介:
周春丽, 女, 1996年生, 硕士研究生。主要从事高寒草地适应性管理研究。E-mail: zhoucl@nwipb.cas.cn
基金资助:
ZHOU Chun-li1,2, LI Yi-kang1*, CAO Guang-min1, PENG Cuo-ji1,2, SONG Ming-hua3, XU Xing-liang3, ZHOU Hua-kun1, LIN Li1
Received:
2020-04-21
Accepted:
2020-08-12
Online:
2020-10-15
Published:
2021-04-15
Contact:
* E-mail: liyikang501@163.com
Supported by:
摘要: 碳氮稳定同位素技术在草地生态系统研究中的应用日渐广泛,本文针对其在青藏高原高寒草甸生态系统中的研究与应用进行了总结。首先,探讨了环境因子(海拔、水肥、草地退化、温度)对青藏高原高寒草甸碳氮同位素组成(δ13C、δ15N)的影响:高寒草甸植物δ13C值与海拔呈正相关,与大气压强、草地退化和温度均呈负相关,与降水的关系尚有争议;土壤δ13C值与海拔和草地退化呈正相关;植被的δ15N值与水肥呈正相关,土壤的δ15N值与草地退化呈负相关。其次,综述了近年来该技术在高寒草甸植物光合型鉴定、植物水分利用、食物链营养关系、碳氮循环等方面的研究进展。最后,对碳氮稳定同位素技术在研究高寒草甸土壤有机碳与土壤呼吸、重现植被类型更替和气候演化历史、土壤N2O溯源、探究高寒草甸退化的原因、藏药与动物食品产地溯源等方面的应用前景进行了展望,以期进一步发挥其在青藏高原高寒草甸研究中的潜力。
周春丽, 李以康, 曹广民, 朋措吉, 宋明华, 徐兴良, 周华坤, 林丽. 碳氮稳定同位素技术在青藏高原高寒草甸生态系统研究中的应用: 进展与展望[J]. 应用生态学报, 2020, 31(10): 3568-3578.
ZHOU Chun-li, LI Yi-kang, CAO Guang-min, PENG Cuo-ji, SONG Ming-hua, XU Xing-liang, ZHOU Hua-kun, LIN Li. Carbon and nitrogen stable isotopes technology in the researches on alpine meadow ecosystem in Qinghai-Tibet Plateau: Progress and prospect[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3568-3578.
[1] 鲁春霞, 谢高地, 肖玉, 等. 青藏高原生态系统服务功能的价值评估. 生态学报, 2004, 24(12): 2749-2755 [Lu C-X, Xie G-D, Xiao Y, et al. Ecosystem diversity and economic valuation of Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2004, 24(12): 2749-2755] [2] 张世虎. 青藏高原东部高寒草甸土壤氮的矿化和硝化及地上地下关系的研究. 博士论文. 兰州: 兰州大学, 2011 [Zhang S-H. Mineralization and Nitrification of Soil Nitrogen in Alpine Meadow in the Eastern Part of Qinghai-Tibet Plateau and the Relationship between Soil Nitrogen and Soil. PhD Thesis. Lanzhou: Lanzhou University, 2011] [3] 杨思维. 高寒草甸植物群落与土壤对短期放牧的响应研究. 博士论文. 兰州: 甘肃农业大学, 2017 [Yang S-W. Response of Alpine Meadow Plant Community and Soil to Short-term Grazing. PhD Thesis. Lanzhou: Gansu Agricultural University, 2011] [4] 王志鹏, 楚彬, 周睿, 等. 祁连山东段高寒草甸常见植物稳定性同位素特征. 甘肃农业大学学报, 2019, 54(1): 175-183 [Wang Z-P, Chu B, Zhou R, et al. Characteristics of stable isotopes of common plants in alpine meadow on eastern Qilian Mountains. Journal of Gansu Agricultural University, 2019, 54(1): 175-183] [5] Acton P, Fox J, Campbell E. Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. Journal of Geophysical Research: Biogeosciences, 2013, 118: 1532-1545 [6] Yang YH, Ji CJ, Chen LY. Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Functional Ecology, 2015, 29: 839-848 [7] 周咏春, 张文博, 程希雷, 等. 植物及土壤碳同位素组成对环境变化响应研究进展. 环境科学研究, 2019, 32(4): 565-572 [Zhou Y-C, Zhang W-B, Cheng X-L, et al. A review on the responses of plant and soil carbon stable isotope composition to environmental change. Research of Environmental Sciences, 2019, 32(4): 565-572] [8] 陶贞. 草原土壤有机碳动力学同位素示踪研究. 博士论文. 北京: 中国科学院研究生院, 2005 [Tao Z. Isotope Tracing of Soil Organic Carbon Dynamics in the Grassland. PhD Thesis. Beijing: Graduate School of Chinese Academy of Sciences, 2005] [9] Gioseffi E, de Neergaard A, Schjoerring JK. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants. Biogeosciences, 2012, 9: 1509-1518 [10] Harrison KA, Bol R, Bardgett RD. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen. Soil Biology & Biochemistry, 2008, 40: 228-237 [11] 林光辉. 稳定同位素生态学: 先进技术推动的生态学新分支. 植物生态学报, 2010, 34(2): 119-122 [Lin G-H. Stable isotope ecology: A new branch of ecology resulted from technology advances. Chinese Journal of Plant Ecology, 2010, 34(2): 119-122] [12] 全小龙, 段中华, 乔有明, 等. 不同高寒草甸土壤碳氮稳定同位素和密度的差异. 草业学报, 2016, 25(12): 27-34 [Quan X-L, Duan Z-H, Qiao Y-M, et al. Variations in soil carbon and nitrogen stable isotopes and density among different alpine meadows. Acta Pra-taculturae Sinica, 2016, 25(12): 27-34] [13] 赵云飞, 汪霞, 欧延升, 等. 若尔盖草甸退化对土壤碳、氮和碳稳定同位素的影响. 应用生态学报, 2018, 29(5): 1405-1411 [Zhao Y-F, Wang X, Ou Y-S, et al. Effects of alpine meadow degradation on soil carbon, nitrogen and carbon stable istope in Zoige Plateau. Chinese Journal of Applied Ecology, 2018, 29(5): 1405-1411] [14] 易现峰. 海北高寒草甸土壤有机碳同位素组成及C3/C4碳源的变化. 西北植物学报, 2005, 25(2): 336-342 [Yi X-F. Stable carbon isotopic composition in soil organic carbon and C3/C4 source variations at the Haibei alpine meadow. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(2): 336-342] [15] 贠汉伯. 青藏高原内陆不同生态系统中主要植物δ13C、δ15N/‰及非结构性碳水化合物的季节性变化特征研究. 硕士论文. 兰州: 西北师范大学, 2010. [Yun H-B. Research on the Seasonal Characteristics of δ13C, δ15N/‰ and Non-Structural Carbohydrate of Main Plants in Different Ecosystems in the Inland of Qinghai-Tibet Plateau. Master Thesis. Lanzhou: Northwest Normal University, 2010] [16] 李银风. 青藏高原高寒牧区土-草-畜-人物质循环过程中稳定碳、氮同位素的分析. 硕士论文. 兰州: 兰州大学, 2016 [Li Y-F. The Analysis of the Stable Carbon and Nitrogen Isotopes in the Process of Soil-Grass-Livestock-Human Material Circulation on Qinghai-Tibet Plateau Alpine Pastoral Area. Master Thesis. Lanzhou: Lanzhou University, 2016] [17] 周咏春, 樊江文, 钟华平, 等. 青藏高原草地群落植物碳同位素组成与海拔梯度的关系. 中国科学: 地球科学, 2013, 43(1): 120-130 [Zhou Y-C, Fan J-W, Zhong H-P, et al. Relationships between altitudinal gradient and plant carbon isotope composition of grassland communities on the Qinghai-Tibet Plateau. Science China: Earth Sciences, 2013, 43(1): 120-130] [18] 李明财, 易现峰, 李来兴, 等. 基于稳定碳同位素技术研究青藏高原东部高寒区植被的光合型. 西北植物学报, 2004, 24(6): 1052-1056 [Li M-C, Yi X-F, Li L-X, et al. Photosynthetic pathways of plants grown in alpine and cold region in the East Qinghai-Tibet Pla-teau based on stable carbon isotope value. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(6): 1052-1056] [19] 李明财, 黎贞发, 易现峰, 等. 青藏高原东部高寒草甸植物δ13C年间变化及其环境分析. 生态环境, 2007, 16(4): 1205-1210 [Li M-C, Li Z-F, Yi X-F, et al. Annual variation of plant δ13C and its environmental analysis in alpine meadow in the east of Tibetan Pla-teau. Ecology and Environment, 2007, 16(4): 1205-1210] [20] 宋大伟, 李明财, 李来兴, 等. 高寒草甸消费者种群稳定碳、氮同位素组成的海拔分异. 生态学杂志, 2007, 26(1): 40-45 [Song D-W, Li M-C, Li L-X, et al. Altitudinal differentiation of stable carbon and nitrogen isotopes composition of main consumers on alpine meadow of east Qinghai-Tibet Plateau. Chinese Journal of Ecology, 2007, 26(1): 40-45] [21] 全小龙. 基于土壤和植物稳定碳氮同位素对高寒草地退化演替的判别分析研究. 硕士论文. 西宁: 青海大学, 2016 [Quan X-L. Discrimination Analysis of Re-trogressive Succession with Carbon and Nitrogen Isotopes from Plants and Soil on Alpine Meadow. Master Thesis. Xining: Qinghai University, 2016] [22] 王谋, 李勇, 张玉修, 等. 青藏高原腹地现代植物δ13C空间分异反映的环境信息. 地球科学进展, 2004, 19(suppl.1): 424-428 [Wang M, Li Y, Zhang Y-X, et al. Environmental information from the change of δ13C values of modern plants in Qinghai-Tibetan Pla-teau. Advance in Earth Sciences, 2004, 19(suppl.1): 424-428] [23] 王文颖, 马永贵, 徐进, 等. 高寒矮嵩草草甸植物吸收土壤氮素的多元化途径研究. 中国科学: 地球科学, 2012, 42(8): 1264-1272 [Wang W-Y, Ma Y-G, Xu J, et al. The uptake diversity of soil nitrogen nu-trients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau. Science China: Earth Sciences, 2012, 42(8): 1264-1272] [24] 王文颖, 周华坤, 杨莉, 等. 高寒藏嵩草草甸植物对土壤氮素利用的多元化特征. 自然资源学报, 2014, 29(2): 249-255 [Wang W-Y, Zhou H-K, Yang L, et al. The uptake strategy of soil nitrogen nutrients by different plant species in alpine Kobresia tibetica meadow on the Qinghai-Tibet Plateau. Journal of Natural Resources, 2014, 29(2): 249-255] [25] 康清. 高寒草地土壤氮素及高寒牧草对土壤氮素吸收特征研究. 博士论文. 西宁: 青海师范大学, 2016 [Kang Q. The Study on Soil Nitrogen Dynamics and the Uptake of Alpine Plant Species to Soil Resolved Nitrogen in Alpine Grassland. PhD Thesis. Xining: Qinghai Normal University, 2016] [26] 徐隆华, 姚步青, 王文颖, 等. 矮嵩草草甸主要植物不同器官对氮素的吸收及分配特征研究. 西北植物学报, 2018, 38(5): 957-966 [Xu L-H, Yao B-Q, Wang W-Y, et al. Nitrogen absorption and distribution characteristics in different organs of the main plants in Kobresia humilis meadow. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(5): 957-966] [27] Yang Y, Ji C, Chen L, et al. Edaphic rather than climatic controls over 13C enrichment between soil and vege-tation in alpine grasslands on the Tibetan Plateau. Functional Ecology, 2015, 29: 839-848 [28] Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annual Review of Physiology and Plant Molecular Biology, 1989, 40: 503-537 [29] 张慧文. 天山现代植物和表土有机稳定碳同位素组成的海拔响应特征. 硕士论文. 兰州: 兰州大学, 2010 [Zhang H-W. Variation in Organic Carbon Isotope Composition Values of Plant and Surface Soil along an Altitude Gradient in the Tianshan Mountains. Master Thesis. Lanzhou: Lanzhou University, 2010] [30] 冯虎元, 安黎哲, 王勋陵. 环境条件对植物稳定碳同位素组成的影响. 植物学通报, 2000, 17(4): 312-318 [Feng H-Y, An L-Z, Wang X-L. A review on effect of environmental factors on stable carbon isotope composition in plants. Chinese Bulletin of Botany, 2000, 17(4): 312-318] [31] 李明财, 易现峰, 李来兴, 等. 青藏高原东部典型高山植物叶片δ13C的季节变化. 西北植物学报, 2005, 25(1): 77-81 [Li M-C, Yi X-F, Li L-X, et al. Seasonal variations of δ13C values in leaves of typical alpine plants grown in the east of Qinghai-Tibet Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(1): 77-81] [32] 旺罗, 吕厚远, 吴乃琴, 等. 青藏高原现生禾本科植物的δ13C 与海拔高度的关系. 第四纪研究, 2003, 23(5): 573-580 [Wang L, Lyu H-Y, Wu N-Q, et al. Altitudinal trends of stable carbon isotope composition for Poeceae in Qinghai-Xizang Plateau. Quaternary Sciences, 2003, 23(5): 573-580] [33] Li MC, Liu HY, Li LX. Carbon isotope composition of plants along altitudinal gradient and its relationship to environmental factors on the Qinghai-Tibet Plateau. Polish Journal of Ecology, 2007, 55: 67-78 [34] Wu JS, Song MH, Ma WL, et al. Plant and soil’s δ15N are regulated by climate, soil nutrients, and species diversity in alpine grasslands on the northern Tibetan Plateau. Agriculture, Ecosystems & Environment, 2019, 281: 111-123 [35] 吕厚远, 顾兆炎, 吴乃琴, 等. 海拔高度的变化对青藏高原表土δ13C的影响. 第四纪研究. 2001, 21(5): 399-406 [Lyu H-Y, Gu Z-Y, Wu N-Q, et al. Effect of altitude on the organic carbon-isotope composition of modern surface soils from Qinghai-Xizang Plateau. Quaternary Sciences, 2001, 21(5): 399-406] [36] 魏晴. 利用15N同位素示踪技术研究矮嵩草草甸主要植物种氮素吸收利用对水肥添加的响应. 硕士论文. 西宁: 青海师范大学, 2014 [Wei Q. The Effects of Fertilizer and Water Additions on Main Plants N Absorption and Utilization Stand in Kobresia humilis Meadow Based on 15N Isotope Labeled. Master Thesis. Xining: Qinghai Normal University, 2014] [37] 李雪双. 环青海湖区植物稳定碳氮同位素与重金属空间分布规律及影响因素研究. 硕士论文. 烟台: 鲁东大学, 2018 [Li X-S. Spatial Distribution Pattern and Influencing Factors of Stable Carbon and Nitrogen Isotopes and Heavy Metal in Plants around Qinghai Lake Region. Master Thesis. Yantai: Ludong University, 2018] [38] Du YG, Guo XW, Zhou G, et al. Effect of grazing intensity on soil and plant δ15N of an alpine meadow. Polish Journal of Environmental Studies, 2017, 26: 1071-1075 [39] 刘贤赵, 张勇, 宿庆, 等. 现代陆生植物碳同位素组成对气候变化的响应研究进展. 地球科学进展, 2014, 29(12): 1341-1354 [Liu X-Z, Zhang Y, Su Q, et al. Research progress in responses of modern terrestrial plant carbon isotope composition to climate change. Advances in Earth Science, 2014, 29(12): 1341-1354] [40] 邓建明, 姚步青, 周华坤, 等. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究. 植物生态学报, 2014, 38(2): 116-124 [Deng J-M, Yao B-Q, Zhou H-K, et al. Nitrogen uptake and allocation characteristics of alpine meadow main species under water and nitrogen additions based on 15N isotope. Chinese Journal of Plant Ecology, 2014, 38(2): 116-124] [41] 刘贤赵, 张勇, 宿庆, 等. 陆生植物氮同位素组成与气候环境变化研究进展. 地球科学进展, 2014, 29(2): 216-226 [Liu X-Z, Zhang Y, Su Q, et al. Progress of research on relationships between terrestrial plant nitrogen isotope composition and climate environment change. Advances in Earth Science, 2014, 29(2): 216-226] [42] 王朋朋. 全球气候变化因素对青藏高原高寒草甸典型植物生理特性的影响. 硕士论文. 南京: 南京信息工程大学, 2018 [Wang P-P. Effects of Global Change on Physiological Characteristics of Typical Alpine Mea-dow Plants in Tibetan Plateau. Master Thesis. Nanjing: Nanjing Information Engineering University, 2018] [43] 周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40 [Zhou H-K, Zhao X-Q, Zhou L, et al. A study on correlations between vegetation degradation and soil degradation in the alpine meadow of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40] [44] 刘旻霞, 李俐蓉, 车应弟, 等. 高寒草甸不同演替阶段植物叶片功能性状研究. 植物研究, 2019, 39(5): 760-769 [Liu M-X, Li L-R, Che Y-D, et al. Functio-nal traits of plant leaves at different succession stages in alpine meadow. Bulletin of Botanical Research, 2019, 39(5): 760-769] [45] 姚鸿云. 退化草原的稳定碳同位素特征及影响机理. 硕士论文. 呼和浩特: 内蒙古农业大学, 2017 [Yao H-Y. The Characteristics and Mechanisms of Stable Carbon Isotope in Degraded Grassland. Master Thesis. Huhhot: Inner Mongolia Agricultural University, 2017] [46] Sheu D, Chiu C. Evaluation of cellulose extraction procedures for stable carbon isotope measurement in tree ring research. International Journal of Environmental Analytical Chemistry, 1995, 59: 59-67 [47] Yi XF, Yang YQ. Effect of imitated global warming on δ13C values in seven plant species growing in Tibet alpine meadows. Russian Journal of Plant Physiology, 2007, 54: 736-740 [48] 赵艳艳, 徐隆华, 姚步青, 等. 模拟增温对高寒草甸植物叶片碳氮及其同位素δ13C和δ15N含量的影响.西北植物学报, 2016, 36(4): 777-783 [Zhao Y-Y, Xu L-H, Yao B-Q, et al. Influence of simulated warming to the carbon, nitrogen and their stability isotope-(δ13C, δ15N) contents in alpine meadow plant leaves. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(4): 777-783] [49] Deines P. The carbon isotopic composition of diamonds: Relationship to diamond shape, color, occurrence and vapor composition. Geochimica et Cosmochimica Acta, 1980, 44: 943-961 [50] 比德韦尔, 刘富林. 植物生理学. 北京: 高等教育出版社, 1982: 120-157 [Bidwell, Liu F-L. Phytophy-siology. Beijing: Higher Education Press, 1982: 120-157] [51] 刘旻霞, 车应弟, 李俐蓉, 等. 甘南高寒草甸微地形上植物叶片特征与环境因子的冗余分析. 生态学杂志, 2017, 36(9): 2473-2480 [Liu M-X, Che Y-D, Li L-R, et al. Redundancy analysis of leaf traits and environmental factors of alpine meadow in Southern Gansu Province. Chinese Journal of Ecology, 2017, 36(9): 2473-2480] [52] Dang W, Ling TQ, Wang PP, et al. Effects of 8-year nitrogen and phosphorus treatments on the ecophysiological traits of two key species on Tibetan Plateau. Frontiers in Plant Science, 2018, 9: 1290, doi: 10.3389/fpls.2018.01290 [53] Yang H, He NP, He YT, et al. Stable water use efficiency of Tibetan alpine meadows in past half century: Evidence from wool δ13 C values. PLoS One, 2015, 10(12): e144752 [54] Yang ZP, Gao JX, Zhao XL, et al. Linking thaw depth with soil moisture and plant community composition: Effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau. Plant and Soil, 2013, 367: 687-700 [55] Peterson BJ, Fry B. Stable isotopes in ecosystem stu-dies. Annual Review of Ecology & Systematics, 1987, 18: 293-320 [56] 易现峰, 张晓爱, 李来兴, 等. 高寒草甸生态系统食物链结构分析——来自稳定性碳同位素的证据. 动物学研究, 2004, 25(1): 1-6 [Yi X-F, Zhang X-A, Li L-X, et al. Analysis on food web structure in alpine meadow ecosystem: Evidence from stable carbon isotope signatures. Zoological Research, 2004, 25(1): 1-6] [57] 易现峰, 李来兴, 张晓爱, 等. 人工食物对高原鼠兔稳定性碳和氮同位素组成的影响. 动物学研究, 2004, 25(3): 232-235 [Yi X-F, Li L-X, Zhang X-A, et al. Influence of artificial food on stable carbon and nitrogen isotope composition of plateau pikas. Zoological Research, 2004, 25(3): 232-235] [58] 赵亮, 易现峰, 周华坤, 等. 用稳定性同位素技术确定高寒草甸生态系统中动物营养级模型. 动物学研究, 2004, 25(6): 497-503 [Zhao L, Yi X-F, Zhou H-K, et al. Model of trophic levels of animals in alpine meadow ecosystem by using stable isotopes. Zoological Research, 2004, 25(6): 497-503] [59] 张月鲜. 我国西北地区不同类型草原土壤有机质的稳定碳同位素组成及其差异. 硕士论文. 北京: 北京林业大学, 2012 [Zhang Y-X. The Characteristics of Soil Stable Carbon Isotope in Different Types of Grassland in Northwest of China. Master Thesis. Beijing: Beijing Forestry University, 2012] [60] 许文强, 陈曦, 罗格平, 等. 基于稳定同位素技术的土壤碳循环研究进展. 干旱区地理, 2014, 37(5): 980-987 [Xu W-Q, Chen X, Luo G-P, et al. Progress of research on soil carbon cycle using carbon isotope approach. Arid Land Geography, 2014, 37(5): 980-987] [61] 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响. 植物生态学报, 2019, 43(7): 576-584 [Chen J, Song M-H, Li Y-K. 13C pulse labeling reveals the effects of grazing on partitioning of assimilated carbon in an alpine meadow. Chinese Journal of Plant Ecology, 2019, 43(7): 576-584] [62] Xu XL, Ouyang H, Pei ZY, et al. Fate of 15N labeled nitrate and ammonium salts added to an alpine meadow in the Qinghai-Xizang Plateau, China. Acta Botanica Sinica, 2003, 45: 276-281 [63] Xu XL, Andreas R, Zhou CP, et al. Nutrient limitation of alpine plants: Implications from leaf N:P stoichiome-try and leaf δ15N. Journal of Plant Nutrition and Soil Science, 2014, 177: 378-387 [64] 徐兴良, 白洁冰, 欧阳华. 植物吸收土壤有机氮的研究进展. 自然资源学报, 2011, 26(4): 715-724 [Xu X-L, Bai J-B, Ouyang H. Advances in studies on orga-nic nitrogen uptake by terrestrial plants. Journal of Natural Resources, 2011, 26(4): 715-724] [65] 王文颖, 王启基, 王慧春, 等. 基于植物营养学和稳定同位素技术退化草地生态系统恢复重建研究. 中国科技成果, 2014(22): 35-37 [Wang W-Y, Wang Q-J, Wang H-C, et al. Restoration and reconstruction of degraded grassland ecosystem based on plant nutrition and stable isotope technique. China Science and Techno-logy Achievements, 2014(22): 35-37] [66] 巨晓棠, 谷保静. 氮素管理的指标. 土壤学报, 2017, 54(2): 281-296 [Ju X-T, Gu B-J. Indexes of nitrogen management. Acta Pedologica Sinica, 2017, 54(2): 281-296] [67] 魏晴, 周华坤, 姚步青, 等. 矮嵩草草甸氮素利用率对养分添加与冬季增雪的短期响应. 生态学杂志, 2015, 34(2): 491-496 [Wei Q, Zhou H-K, Yao B-Q, et al. Short-term effects of nutrient additions and snow increase in winter on nitrogen utilization rate of Kobresia humilis meadow. Chinese Journal of Ecology, 2015, 34(2): 491-496] [68] 刘攀, 周华坤, 杨冲, 等. 基于氮同位素标记技术的高寒人工草地氮肥氨挥发和氮素回收率研究. 生态科学, 2018, 37(3): 77-84 [Liu P, Zhou H-K, Yang C, et al. Ammonia volatilization and N recovery of nitrogen fertilizer on alpine artificial grassland based on nitrogen isotope labelling technique. Ecological Science, 2018, 37(3): 77-84] [69] Wu YB, Tan HC, Deng YC, et al. Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling. Global Change Biology, 2010, 16: 2322-2333 [70] Baldock JA. Composition and cycling of organic carbon in soil// Marschner P, Rengel Z, eds. Nutrient Cycling in Terrestrial Ecosystems. Berlin: Springer, 2007: 1-35 [71] Whittinghill KA, Currie WS, Zak DR. Anthropogenic N deposition increases soil C storage by decreasing the extent of litter decay: Analysis of field observations with an ecosystem mode. Ecosystems, 2012, 15: 450-461 [72] 李林森, 程淑兰, 方华军, 等. 氮素富集对青藏高原高寒草甸土壤有机碳迁移和累积过程的影响. 土壤学报, 2015, 52(1): 183-193 [Li L-S, Cheng S-L, Fang H-J, et al. Effects of nitrogen enrichment on transfer and accumulation of soil organic carbon in alpine meadows on the Qinghai-Tibetan Plateau. Acta Pedologica Sinica, 2015, 52(1): 183-193] [73] 罗光强, 耿元波, 袁国富. 碳同位素在草地生态系统碳循环中的应用与展望. 地理科学进展, 2009, 28(3): 441-448 [Luo G-Q, Geng Y-B, Yuan G-F. Application and prospect of carbon isotope in the study of carbon cycle in grassland ecosystem. Progress in Geo-graphy, 2009, 28(3): 441-448] [74] 孙志高, 刘景双, 于君宝, 等. 15N示踪技术在湿地氮素生物地球化学过程研究中的应用进展. 地理科学, 2005, 25(6): 762-768 [Sun Z-G, Liu J-S, Yu J-B. Application advance of 15N trace technique in the biogeochemical process of nitrogen in wetland. Scientia Geographica Sinica, 2005, 25(6): 762-768] [75] 林伟, 房福力, 张薇, 等. 稳定同位素技术在土壤N2O溯源研究中的应用. 应用生态学报, 2017, 28(7): 2344-2352 [Lin W, Fang F-L, Zhang W, et al. A review on development of stable isotope technique in the studies of N2O formation mechanism. Chinese Journal of Applied Ecology, 2017, 28(7): 2344-2352] [76] 綦琳. 青藏高原东缘表土有机碳同位素分布特征及其主控因素研究. 博士论文. 北京: 中国地质大学, 2017 [Qi L. Distribution of Organic Carbon Isotope Composition Formodern Soils from the Eastern Margin of the Tibetan Plateau and Its Main Controlling Factors. PhD Thesis. Beijing: China University of Geosciences, 2017] [77] 吴笛, 邓保军, 谭晓哲, 等. 当代河流系统研究中稳定性同位素的应用. 中国环境管理干部学院学报, 2007, 17(3): 36-39 [Wu D, Deng B-J, Tan X-Z, et al. Applications of stable isotopes to the studies of river systems. Journal of Environmental Management College of China, 2007, 17(3): 36-39] |
[1] | 赵宗权, 索惠英, 焦树林. 万峰湖水库溶解性无机碳来源及时空变异特征 [J]. 应用生态学报, 2020, 31(6): 1783-1790. |
[2] | 李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征 [J]. 应用生态学报, 2020, 31(6): 2109-2118. |
[3] | 杨军, 刘秋蓉, 王向涛. 青藏高原高山嵩草高寒草甸不同退化阶段植物群落与土壤养分 [J]. 应用生态学报, 2020, 31(12): 4067-4072. |
[4] | 高世科, 于雯雯, 张硕. 基于稳定同位素方法的吕泗渔场近岸海域夏季主要生物营养级 [J]. 应用生态学报, 2020, 31(1): 301-308. |
[5] | 祁如林, 马文梅, 祁百元, 曹家豪, 杨亚军, 马海荣, 王一峰. 弯齿风毛菊花部器官的海拔变异及其与种子质量和数目的关系 [J]. 应用生态学报, 2019, 30(8): 2647-2653. |
[6] | 黄佳兴, 龚玉艳, 徐姗楠, 陈作志, 张俊, 于文明. 南海中西部海域鸢乌贼中型群和微型群的营养生态位 [J]. 应用生态学报, 2019, 30(8): 2822-2828. |
[7] | 张路, 李炳章, 郭克疾, 刘峰, 宗嘎, 李昕宇, 吕永磊, 欧阳志云. 西藏唐北地区湖泊动态及空间格局预测 [J]. 应用生态学报, 2019, 30(8): 2793-2802. |
[8] | 刘书路,张浩,田文凤,桂光照,吴,婷,余健,赵娟. 不同土壤水分条件下香樟凋落叶覆盖对土壤碳氮循环的影响 [J]. 应用生态学报, 2019, 30(1): 85-94. |
[9] | 曹建军,王雪艳,李梦天,杨书荣,许雪贇,龚毅帆. 青藏高原草地管理方式对土壤养分及其空间分布的影响 [J]. 应用生态学报, 2018, 29(6): 1839-1845. |
[10] | 赵云飞, 汪霞, 欧延升, 洪苗苗, 黄政, 李佳, 贾海霞. 若尔盖草甸退化对土壤碳、氮和碳稳定同位素的影响 [J]. 应用生态学报, 2018, 29(5): 1405-1411. |
[11] | 李朝文, 王凯, 程晓鹏, 章守宇, 张云岭. 马鞍列岛海洋牧场褐菖鲉和小黄鱼营养生态位差异 [J]. 应用生态学报, 2018, 29(5): 1489-1493. |
[12] | 石芳忠, 李小雁, 吴秀臣, 刘文玲, 裴婷婷, 孔冬冬, 蒋志云, 张瑜. 青藏高原植被生长对PDO响应的季节分异 [J]. 应用生态学报, 2018, 29(4): 1107-1116. |
[13] | 许雪贇,秦燕燕,曹建军,李梦天,龚毅帆,张小芳. 青藏高原火绒草叶片生态化学计量特征随海拔的变化 [J]. 应用生态学报, 2018, 29(12): 3934-3940. |
[14] | 王志鹏, 张宪洲, 何永涛, 李猛, 石培礼, 俎佳星, 牛犇. 2000—2015年青藏高原草地归一化植被指数对降水变化的响应 [J]. 应用生态学报, 2018, 29(1): 75-83. |
[15] | 王娜, 许文强, 徐华君, 冯异星, 李超凡. 准噶尔盆地南缘荒漠区土壤碳分布及其稳定同位素变化 [J]. 应用生态学报, 2017, 28(7): 2215-2221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||