[1] 朴世龙, 方精云. 1982—1999年青藏高原植被净第一性生产力及其时空变化. 自然资源学报, 2002, 17(3): 373-380 [2] Steven WR, Ramakrishna RN, Faith AH, et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience, 2004, 54: 547-560 [3] Ramakrishna RN, Charles DK, Hirofumi H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003,300: 1560-1563 [4] Chen S, Guo B, Zhang R, et al. Quantitatively determine the dominant driving factors of the spatial-temporal changes of vegetation NPP in the Hengduan Mountain area during 2000-2015. Journal of Mountain Science, 2021,18: 427-445 [5] 李燕丽, 潘贤章, 王昌昆, 等. 2000—2011年广西植被净初级生产力时空分布特征及其驱动因素. 生态学报, 2014,34(18): 5220-5228 [6] 王芳, 汪左, 张运. 2000—2015年安徽省植被净初级生产力时空分布特征及其驱动因素. 生态学报, 2018, 38(8): 2754-2767 [7] 王钊, 李登科. 2000—2015年陕西植被净初级生产力时空分布特征及其驱动因素. 应用生态学报, 2018, 29(6): 1876-1884 [8] Zhang YL, Qi W, Zhou CP, et al. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. Journal of Geographical Sciences, 2014, 24: 269-287 [9] 孙云晓, 王思远, 常清, 等. 青藏高原近30年植被净初级生产力时空演变研究. 广东农业科学, 2014, 41(13): 160-166 [10] 陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应. 自然资源学报, 2020, 35(10): 2511-2527 [11] 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积. 地理研究, 2002, 21(1): 1-8 [12] 杨潇, 郭兵, 韩保民, 等. 青藏高原NPP时空演变格局及其驱动机制分析. 长江流域资源与环境, 2019,28(12): 3038-3050 [13] Mao DH, Luo L, Wang ZM, et al. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau. Journal of Geographical Sciences, 2015, 25: 967-977 [14] Brent NH. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 1986, 7: 1417-1434 [15] Ji YH, Zhou GS, Luo TX, et al. Variation of net primary productivity and its drivers in China’s forests during 2000-2018. Forest Ecosystems, 2020, 7: 190-200 [16] 徐斌, 杨秀春, 陶伟国, 等. 中国草原产草量遥感监测. 生态学报, 2007, 27(2): 405-413 [17] 王强, 张廷斌, 易桂花, 等. 横断山区2004—2014年植被NPP时空变化及其驱动因子. 生态学报, 2017,37(9): 3084-3095 [18] 郝永萍, 陈育峰, 张兴有. 植被净初级生产力模型估算及其对气候变化的响应研究进展. 地球科学进展, 1998, 6(7): 55-62 [19] Chen GZ, Huang Y, Chen J, et al. Spatiotemporal variation of vegetation net primary productivity and its responses to climate change in the Huainan Coal Mining Area. Journal of the Indian Society of Remote Sensing, 2019, 47: 1905-1916 [20] Mohamed MAA, Babiker IS, Chen ZM, et al. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Science of the Total Environment, 2004, 332: 123-137 [21] 许洁, 陈惠玲, 商沙沙, 等. 2000—2014年青藏高原植被净初级生产力时空变化及对气候变化的响应. 干旱区地理, 2020, 43(3): 592-601 [22] 周夏飞, 於方, 曹国志, 等. 2001—2015年青藏高原草地碳源汇时空变化及其与气候因子的关系. 水土保持研究, 2019, 26(1): 76-81 [23] 陈卓奇, 邵全琴, 刘纪远, 等. 基于MODIS的青藏高原植被净初级生产力研究. 中国科学: 地球科学, 2012, 42(3): 402-410 [24] 李燕丽, 潘贤章, 王昌昆, 等. 2000—2011年广西植被净初级生产力时空分布特征及其驱动因素. 生态学报, 2014, 34(18): 5220-5228 [25] 梁大林, 唐海萍. 青藏高原两种高寒草地植被变化及其水温驱动因素分析. 生态学报, 2022, 42(1): 287-300 [26] Zhang Y, Zhang C, Wang Z, et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Science of the Total Environment, 2016,3: 563-564 [27] Gao QZ, Guo YQ, Xu HM, et al. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Science of the Total Environment, 2016,2: 34-41 [28] Gao YH, Zhou X, Wang Q, et al. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau. Science of the Total Environment, 2013, 444: 356-362 [29] 周秉荣, 朱生翠, 李红梅. 三江源区植被净初级生产力时空特征及对气候变化的响应. 干旱气象, 2016, 34(6): 958-965 [30] Ren YH, Yang K, Wang H, et al. The south Asia monsoon break promotes grass growth on the Tibetan Pla-teau. Journal of Geophysical Research: Biogeosciences, 2021, 3: DOI:10.1029/2020JG005951 [31] Guo B, Zang W, Yang F, et al. Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015. Journal of Arid Land, 2020,12: 1-17 |