[1] |
张镱锂, 李炳元, 郑度. 论青藏高原范围与面积. 地理研究, 2002, 21(1): 1-8
|
[2] |
王荔, 曾辉, 张扬建, 等. 青藏高原土壤碳储量及其影响因素研究进展. 生态学杂志, 2019, 38(11): 3506-3515
|
[3] |
Fang JY, Liu GH, Xu SL. Soil carbon pool in China and its global significance. Journal of Environmental Sciences, 1996, 2: 249-254
|
[4] |
Zhu J, Zhang Y, Yang X, et al. Warming alters plant phylogenetic and functional community structure. Journal of Ecology, 2020, 108, doi: 10.1111/1365-2745.13448
|
[5] |
Zhu J, Zhang Y, Jiang L. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agricultural and Forest Meteorology, 2017, 233: 242-249
|
[6] |
曹广民, 张金霞. 中国嵩草草甸. 北京: 科学出版社, 2001
|
[7] |
Liu X, Zhang Y, Han W, et al. Enhanced nitrogen depo-sition over China. Nature, 2013, 494: 459-462
|
[8] |
Niu S, Wu MY, Han YI, et al. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 2010, 16: 144-155
|
[9] |
Wang Y, Jiang Q, Yang Z, et al. Effects of water and nitrogen addition on ecosystem carbon exchange in a meadow steppe. PLoS One, 2015, 10(5): 0127695
|
[10] |
Elser JJ, Bracken MES, Cleland EE, et al. Global ana-lysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10: 1135-1142
|
[11] |
Hungate BA, Dukes JS, Shaw MR, et al. Atmospheric science, nitrogen and climate change. Science, 2003, 302: 1512-1513
|
[12] |
Luo Y, Su B, Currie WS, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 2004, 54: 731-739
|
[13] |
Tian D, Niu SL. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10: 1714-1721
|
[14] |
Guo H, Ye C, Zhang H, et al. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2017, 113: 26-34
|
[15] |
Wang C, Liu D, Bai E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 2018, 120: 126-133
|
[16] |
全国土壤普查办公室. 中国土壤分类系统. 北京: 农业出版社, 1992
|
[17] |
武倩, 韩国栋, 王忠武, 等. 模拟增温和氮素添加对荒漠草原生态系统碳交换的影响. 生态学杂志, 2016, 35(6): 1427-1434
|
[18] |
敖小蔓, 孟倩, 徐智超, 等. 氮、磷添加对呼伦贝尔草甸草原生态系统净CO2交换的影响.草业科学, 2020, 37(8): 1428-1439
|
[19] |
Xia J, Niu S, Wan S. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 2009, 15: 1544-1556
|
[20] |
孙学凯, 林力涛, 于占源, 等. 施氮对沙质草地生态系统碳交换特征的影响. 生态学杂志, 2019, 38(1): 110-118
|
[21] |
张杰琦, 李奇, 任正炜, 等. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 2010, 34(10): 1125-1131
|
[22] |
Wan S, Xia J, Liu W, et al. Photosynthetic over-compensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 2009, 90: 2700-2710
|
[23] |
马涛, 童云峰, 刘锦霞, 等. 不同施肥处理高寒草甸植物群落物种多样性与生产力的关系. 草原与草坪, 2008(4): 34-38
|
[24] |
Zhu J, Zhang Y, Jiang L. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agricultural and Forest Meteorology, 2017, 233: 242-249
|
[25] |
宗宁, 石培礼, 赵广帅, 等. 降水量变化对藏北高寒草地养分限制的影响研究. 植物生态学报, 2021, 45(5): 444-455
|
[26] |
王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构功能和土壤质量的影响. 生态学报, 2013, 33(10): 3101-3113
|
[27] |
Henry HAL, Kim MK. Responses of net ecosystem CO2 exchange and plant biomass to warming and nitrogen addition in a temperate grass-dominated system. 96th ESA Annual Convention, Melbourne, 2011
|
[28] |
陈伏龙, 王怡璇, 吴泽斌, 等. 气候变化和人类活动对干旱区内陆河径流量的影响——以新疆玛纳斯河流域肯斯瓦特水文站为例. 干旱区研究, 2015, 32(4): 692-697
|
[29] |
赵亮, 徐世晓, 伏玉玲, 等. 积雪对藏北高寒草甸CO2和水汽通量的影响. 草地学报, 2005, 13(3): 242-247
|
[30] |
郑佳华, 张峰, 赵天启, 等. 氮、磷、钾施配对大针茅割草地地上生物量的影响. 中国草地学报, 2020, 42(5): 64-71
|
[31] |
周一平, 张玉革, 马望, 等. 氮添加和干旱对呼伦贝尔草原5种植物性状的影响. 生态环境学报, 2020, 29(1): 41-48
|
[32] |
Tian D, Niu SL. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10: 1714-1721
|
[33] |
Zhao C, Zhu L, Liang J, et al. Effects of experimental warming and nitrogen fertilization on soil microbial communities and processes of two subalpine coniferous species in Eastern Tibetan Plateau, China. Plant and Soil, 2014, 382: 189-201
|
[34] |
Zheng LQ, Huang FL, Reena N, et al. Physiological and transcriptome analysis of iron and phosphorus intera-ction in rice seedlings. Plant Physiology, 2009, 151: 262-274
|