[1] Oerke EC. Crop losses to pests. Journal of Agricultural Science, 2006, 144: 31-43 [2] 张自常, 李永丰, 张彬, 等. 稗属杂草对水稻生长发育和产量的影响. 应用生态学报, 2014, 25(11): 3177-3184 [Zhang Z-C, Li Y-F, Zhang B, et al. Influence of weeds in Echinochloa on growth and yield of rice. Chinese Journal of Applied Ecology, 2014, 25(11): 3177-3184] [3] 马国兰, 柏连阳, 刘都才, 等. 我国长江中下游稻区稗草对二氯喹啉酸的抗药性研究. 中国水稻科学, 2013, 27(2): 184-190 [Ma G-L, Bai L-Y, Liu D-C, et al. Resistance of Echinoloa crusgalli (L.) Beauv. to quinclorac in the rice growing region of the middle and lower reaches of Yangtze River in China. Chinese Journal of Rice Science, 2013, 27(2): 184-190] [4] Yasuor H, Milan M, Eckert JW, et al. Quinclorac resistance: A concerted hormonal and enzymatic effort in Echinochloa phyllopogon. Pest Management Science, 2012, 68: 108-115 [5] Xu JY, Lyu B, Wang Q, et al. A resistance mechanism dependent upon the inhibition of ethylene biosynthesis. Pest Management Science, 2013, 69: 1407-1414 [6] Gao Y, Pan L, Sun Y, et al. Resistance to quinclorac caused by the enhanced ability to detoxify cyanide and its molecular mechanism in Echinochloa crusgalli var. zelayensis. Pesticide Biochemistry and Physiology, 2017, 143: 231-238 [7] 董明超, 杨霞, 张自常, 等. 抗性稗草1-氨基环丙烷-1-羧酸氧化酶基因的克隆与表达分析. 中国农业科学, 2015, 48(20): 4077-4085 [Dong M-C, Yang X, Zhang Z-C, et al. Identification and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase gene from quinclorac-resistant barnyard grass (Echinochloa crusgalli). Scientia Agricultura Sinica, 2015, 48(20): 4077-4085] [8] Chayapakdee P, Sunohara Y, Endo M, et al. Quinclorac resistance in Echinochloa phyllopogon is associated with reduced ethylene synthesis rather than enhanced cyanide detoxification by β-cyanoalanine synthase. Pest Management Science, 2020, 76: 1195-1204 [9] Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 2011, 14: 290-295 [10] Grossmann K. Auxin herbicides: Current status of mecha-nism and mode of action. Pest Management Science, 2010, 66: 113-120 [11] Farmer EE. Plant biology: Jasmonate perception machines. Nature, 2007, 448: 659-660 [12] Wasternack C. Action of jasmonates in plant stress responses and development: Applied aspects. Biotechnology Advances, 2014, 32: 31-39 [13] Wasternack C, Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111: 1021-1058 [14] 王云锋, 王长秘, 李春琴, 等. 稻瘟病菌侵染时水稻防御体系对外源茉莉酸的响应分析. 南方农业学报, 2018, 49(7): 1324-1331 [Wang Y-F, Wang C-M, Li C-Q, et al. Response of rice defense system to exogenous jamonisic acids during rice blast strain infecting rice. Journal of Southern Agriculture, 2018, 49(7): 1324-1331] [15] 李杨洋, 焦浈. 外源茉莉酸甲酯对小麦幼苗低温耐受性的影响. 生物技术通报, 2018, 34(3): 87-92 [Li Y-Y, Jiao Z. Effects of exogenous methyl jasmonate on the tolerance of wheat seedlings to low temperature. Biotechnology Bulletin, 2018, 34(3): 87-92] [16] 马超, 冯雅岚, 张均, 等. 外源茉莉酸甲酯对干旱胁迫下小麦花后内源激素含量及产量形成的影响. 植物生理学报, 2017, 53(6): 1051-1058 [Ma C, Feng Y-L, Zhang J, et al. Effects of exogenous methyl jasmonate on endogenous hormone contents and yield formation of wheat after anthesis under drought stress. Plant Physiology Journal, 2017, 53(6): 1051-1058] [17] El-Wakeil NE, Volkmar C, Sallam AA. Jasmonic acid induces resistance to economically important insect pests in winter wheat. Pest Management Science, 2010, 66: 549-554 [18] War AR, Paulraj MG, Ignacimuthu S, et al. Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea. Pest Management Science, 2015, 71: 72-82 [19] 焦龙, 蔡晓明, 边磊. 茉莉酸类化合物:从植物的诱导抗虫防御反应到生长-防御权衡. 应用生态学报, 2018, 29(11): 3876-3890 [Jiao L, Cai X-M, Bian L. Jasmonates: From induced plant anti-heibivore defensive reaction to growth-defense tradeoffs. Chinese Journal of Applied Ecology, 2018, 29(11): 3876-3890] [20] Seefeldt SS, Jensen JE, Fuerst EP. Log-logistic analysis of herbicide dose-response relationships. Weed Technology, 1995, 9: 218-227 [21] Doganlar ZB. Physiological and genetic responses to pesticide mixture treatment of Veronica beccabunga. Water, Air and Soil Pollution, 2012, 223: 6201-6212 [22] Agami RA, Mohamed GF. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety, 2013, 94: 164-171 [23] Li Y, Zhao HX, Duan BL, et al. Effect of drought and ABA on growth, photosynthesis and antioxidant system of Cotinus coggygria seedlings under two different light conditions. Environmental and Experimental Botany, 2011, 71: 107-113 [24] Liang L, Lu YL, Yang H. Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environmental Science and Pollution Research, 2012, 19: 2044-2054 [25] Kaya A, Doganlar ZB. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicology and Environmental Safety, 2016, 124: 470-479 [26] 李顺欣, 郅军锐, 杨广明, 等. 外源茉莉酸诱导的菜豆叶片生化抗性及其对西花蓟马体内保护酶和解毒酶活性的影响. 应用生态学报, 2017, 28(9): 2975-2983 [Li S-X, Zhi J-R, Yang G-M, et al. Resistance of bean leaves induced by exogenous jasmonic acid and its effects on activities of protective and detoxification enzymes in Frankliniella occidentalis. Chinese Journal of Applied Ecology, 2017, 28(9): 2975-2983] [27] 宋云, 李林宣, 卓凤萍, 等. 茉莉酸信号传导在植物抗逆性方面研究进展. 中国农业科技导报, 2015, 17(2): 17-24 [Song Y, Li L-X, Zhuo F-P, et al. Progress on jasmonic acid signaling in plant stress resistant. Journal of Agricultural Science and Technology, 2015, 17(2): 17-24] [28] 严加坤, 严荣, 汪亚妮. 外源茉莉酸甲酯对盐胁迫下玉米根系吸水的影响. 广东农业科学, 2019, 46(1): 1-6 [Yan J-K, Yan R, Wang Y-N. Impact of exogenous methyl jasmonate on water absorption of maize roots under salt stress. Guangdong Agricultural Sciences, 2019, 46(1): 1-6] [29] Peng Q, Han HP, Yang X, et al. Quinclorac resistance in Echinochloa crusgalli from China. Rice Science, 2019, 26(5): 300-308 |