[1] IPPC. Intergovernmental panel on climate change (2013) summary for policymakers// Stocker TF, Qin D, Plattner GK, eds. Climate Change 2013: The Physical Science Basis, Contribution of Working Group. Ⅰ. to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 225-248 [2] 陈敏玲, 张兵伟, 任婷婷, 等. 内蒙古半干旱草原土壤水分对降水格局变化的响应. 植物生态学报, 2016, 40(7): 658-668 [Chen M-L, Zhang B-W, Ren T-T, et al. Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(7): 658-668] [3] 梁建秋, 张明荣, 吴海英. 大豆抗旱性研究进展. 大豆科学, 2010, 29(2): 341-346 [Liang J-Q, Zhang M-R, Wu H-Y. Advances in drought tolerance of soybean. Soybean Science, 2010, 29(2): 341-346] [4] Arumingtyas EL, Savitri ES, Purwoningrahayu RD. Protein profiles and dehydrin accumulation in some soybean varieties (Glycine max L. Merr.) in drought stress conditions. American Journal of Plant Sciences, 2013, 4: 134-141 [5] 郭数进, 杨凯敏, 霍瑾, 等. 干旱胁迫对大豆鼓粒期叶片光合能力和根系生长的影响. 应用生态学报, 2015, 26(5): 1419-1425 [Guo S-J, Yang K-M, Huo J, et al. Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage. Chinese Journal of Applied Ecology, 2015, 26(5): 1419-1425] [6] 张朋, 张文会, 苗秀莲, 等. CO2浓度倍增对大豆生长及光合作用的影响. 大豆科学, 2010, 29(1): 64-67 [Zhang P, Zhang W-H, Miao X-L, et al. Effects of doubled CO2 concentration on growth and photosynthesis of soybean. Soybean Science, 2010, 29(1): 64-67] [7] 张彤, 王磊, 杨俊兴. CO2倍增对干旱胁迫下大豆光合效应的影响. 河南农业科学, 2005(8): 47-50 [Zhang T, Wang L, Yang J-X. Effect of elevated CO2 concentration on photosynthetic efficiency of soybean under drought stress. Journal of Henan Agricultural Sciences, 2005(8): 47-50] [8] Ohto MA, Onai K, Furukawa Y, et al. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology, 2001, 127: 252-261 [9] 张美云, 钱吉, 郑师章. 渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化. 复旦学报: 自然科学版, 2001, 40(5): 558-561 [Zhang M-Y, Qian J, Zheng S-Z. Changes of free proline and soluble sugar in wild soybean under osmotic stress. Journal of Fudan University: Natural Science, 2001, 40(5): 558-561] [10] Raja V, Majeed U, Kang H, et al. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 2017, 137: 142-157 [11] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48: 909-930 [12] 王文佳, 李爽, 马泽众, 等. 水分胁迫对春大豆叶片保护酶活性及相对电导率的影响. 中国农学通报, 2019, 35(11): 14-18 [Wang W-J, Li S, Ma Z-Z, et al. Water stress affects protective enzyme activity and relative conductivity of spring soybean. Chinese Agricultural Science Bulletin, 2019, 35(11): 14-18] [13] 李玉梅, 李建英, 王根林, 等. 水分胁迫对大豆幼苗叶片内源激素的影响. 大豆科学, 2007, 26(4): 627-629 [Li Y-M, Li J-Y, Wang G-L, et al. Studies on mechanism of endogenous hormones in soybean seedling under water stress. Soybean Science, 2007, 26(4): 627-629] [14] Castro P, Puertolas J, Dodd IC. Stem girdling uncouples soybean stomatal conductance from leaf water potential by enhancing leaf xylem ABA concentration. Environmental and Experimental Botany, 2019, 159: 149-156 [15] Stroumin P, Radeva R. Alteration in abscisic acid content and aldehyde oxidase activity in winter wheat plants under influence of low and freezing temperature. Proceeding of the Bulgarian Academy of Sciences, 2007, 60: 1205-1208 [16] Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: 165-183 [17] Huang TL, Huang HJ. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere, 2008, 71: 1377-1385 [18] Basha E, Lee GJ, Demeler B, et al. Chaperone activity of cytosolic small heat shock proteins from wheat. European Journal of Biochemistry, 2004, 271: 1426-1436 [19] Martin B, Thorstenson YR. Stable carbon isotope composition (δ13C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiology, 1988, 88: 213-217 [20] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006 [Gao J-F. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2006] [21] Luo F, Cheng S, Cai J, et al. Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing. Food Chemistry, 2019, 297: doi: 10.1016/j.foodchem.2019.124964.1-124964.9 [22] Ghosh AK, Ishijiki K, Toyota M, et al. Water potential, stomatal dimension and leaf gas exchange in soybean plants under long-term moisture deficit. Japanese Journal of Tropical Agriculture, 2000, 44: 30-37 [23] Wang AP, Shu KL, Hao XY, et al. Elevated CO2 reduces the adverse effects of drought stress on a high-yielding soybean (Glycine max (L.) Merr.) cultivar by increasing water use efficiency. Plant Physiology and Biochemistry, 2018, 132: 660-665 [24] 杨淞超, 李彦生, 刘晓冰, 等. 大气CO2升高对大豆生理指标及产量影响的研究进展. 大豆科学, 2015, 34(6): 1075-1080 [Yang S-C, Li Y-S, Liu X-B, et al. Research advances on physiological parameters and yield of soybean in response to elevated CO2. Soybean Science, 2015, 34(6): 1075-1080] [25] Gray SB, Dermody O, Klein SP, et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants, 2016, 2: 16132 [26] 董守坤, 赵坤, 刘丽君, 等. 干旱胁迫对春大豆叶绿素含量和根系活力的影响. 大豆科学, 2011, 30(6): 949-953 [Dong S-K, Zhao K, Liu L-J, et al. Effect of drought stress on chlorophyll content and root activity of spring soybean. Soybean Science, 2011, 30(6): 949-953] [27] Abo GMI, Kisiala A, Emery RJN, et al. Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana. Planta, 2019, 250: 1191-1214 [28] 赵丽英, 邓西平, 山仑. 活性氧清除系统对干旱胁迫的响应机制. 西北植物学报, 2005, 25(2): 413-418 [Zhao L-Y, Deng X-P, Shan L. The response mechanism of active oxygen species removing system to drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(2): 413-418] [29] Lascano HR, Melchiorre MN, Luna CM, et al. Effect of photooxidative stress induced by paraquat in two wheat cultivars with differential tolerance to water stress. Plant Science, 2003, 164: 841-848 [30] 王启明, 郑爱珍, 吴诗光. 干旱胁迫对花荚期大豆叶片保护酶活性和膜脂过氧化作用的影响. 安徽农业科学, 2006, 34(8): 1528-1530 [Wang Q-M, Zheng A-Z, Wu S-G. Effects of drought stress on protective enzyme activity and membrane lipid peroxidation in leaf of soybean flowering-poding period. Journal of Anhui Agricultural Sciences, 2006, 34(8): 1528-1530] [31] 罗兴录, 樊吴静, 王军. 木薯不同生育时期内源激素含量变化研究. 中国农学通报, 2011, 27(21): 82-86 [Luo X-L, Fan W-J, Wang J. Studies on the changes of endogenous hormones in cassava during growing development. Chinese Agricultural Science Bulletin, 2011, 27(21): 82-86] [32] Pustovoitova TN, Zhdanova NE, Zholkevich VN. Changes in the levels of IAA and ABA in cucumber leaves under progressive soil drought. Russian Journal of Plant Physiology, 2004, 51: 513-517 [33] 王娟, 李德全. 逆境条件下植物体内渗透调节物质的积累与活性氧代谢. 植物学通报, 2001, 18(4): 459-465 [Wang J, Li D-Q. The accumulation of plant osmoticum and activated oxygen metabolism under stress. Chinese Bulletin of Botany, 2001, 18(4): 459-465] [34] 刘亚茹, 吕丽莎, 程瑾, 等. CDPKs在植物适应非生物胁迫过程中的调节作用. 植物生理学报, 2015, 51(9): 1387-1394 [Liu Y-R, Lyu L-S, Cheng J, et al. Mechanism of CDPKs in plant adaptation to abiotic stress. Plant Physiology Journal, 2015, 51(9): 1387-1394] [35] 韩静. 水稻MAPKK家族基因克隆及转基因研究. 硕士论文. 上海: 上海海洋大学, 2009 [Han J. The Cloning and Transformation of the Mitogen-Activated Protein Kinases Kinases (MAPKK) Genes Family in Oryza sativa L. Master Thesis. Shanghai: Shanghai Ocean University, 2009] |