[1] Good SP, Noone D, Bowen G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 2015, 349: 175-177 [2] Zhao Y, Wang L. Plant water use strategy in response to spatial and temporal variation in precipitation patterns in China: A stable isotope analysis. Forests, 2018, 9: 123 [3] Dawson TE. Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions. Oecologia, 1993, 95: 565-574 [4] Volkmann THM, Haberer K, Gessler A, et al. High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface. New Phytologist, 2016, 210: 839-849 [5] Sternberg PD, Anderson MA, Graham RC, et al. Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma, 1996, 72: 89-98 [6] Besson CK, Lobo-do-Vale R, Rodrigues ML, et al. Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology, 2014, 184: 230-242 [7] Ellsworth PZ, Williams DG. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 2007, 291: 93-107 [8] Cui YQ, Ma JY, Feng Q, et al. Water sources and water-use efficiency of desert plants in different habitats in Dunhuang, NW China. Ecological Research, 2017, 32: 243-258 [9] 刘文娜, 贾剑波, 余新晓, 等. 北京山区松栎混交群落的植物水分来源研究. 应用基础与工程科学学报, 2018, 26(1): 12-22 [Liu W-N, Jia J-B, Yu X-X, et al. Water sources of the oak-pine mixed community in Beijing mountainous area. Journal of Basic Science and Engineering, 2018, 26(1): 12-22] [10] Nie Y, Chen H, Ding Y, et al. Qualitative identification of hydrologically different water sources used by plants in rock-dominated environments. Journal of Hydrology, 2019, 573: 386-394 [11] 谢聪, 赵良菊, 孟飞, 等. 黑河上游森林生态系统植物水分来源. 兰州大学学报: 自然科学版, 2020, 56(4): 502-508 [Xie C, Zhao L-J, Meng F, et al. Water sources of plants in the forest ecosystem in the upper reaches of the Heihe River Basin. Journal of Lanzhou University: Natural Sciences, 2020, 56(4): 502-508] [12] Rossatto DR, Silva LCR, Villalobos-Vega R, et al. Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environmental and Experimental Botany, 2012, 77: 259-266 [13] Evaristo J, Mcdonnell JJ. Prevalence and magnitude of groundwater use by vegetation: A global stable isotope meta-analysis. Scientific Reports, 2017, 7: 44110 [14] Amin A, Zuecco G, Geris J, et al. Depth distribution of soil water sourced by plants at the global scale: A new direct inference approach. Ecohydrology, 2020, 13: e2177 [15] Dai J, Zhang X, Luo Z, et al. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, 2020, 589: 125199 [16] Leuzinger S, Luo Y, Beier C, et al. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends in Ecology & Evolution, 2011, 26: 236-241 [17] 陈英, 杨华, 李伟, 等. 北京地区侧柏人工林标准木生长过程研究. 西北林学院学报, 2012, 27(5): 153-157 [Chen Y, Yang H, Li W, et al. Standard tree growth of Platycladus orientalis plantation in Beijing. Journal of Northwest Forestry University, 2012, 27(5): 153-157] [18] Wang J, Fu B, Lu N, et al. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 2017, 609: 27-37 [19] 刘子奇, 王渝淞, 张欢, 等. 基于稳定同位素和热比率技术的侧柏水分逆向运移特征与过程. 应用生态学报, 2020, 31(6): 1817-1826 [Liu Z-Q, Wang Y-S, Zhang H, et al. Characteristics and processes of reverse sap flow of Platycladus orientalis based on stable isotope technique and heat ratio method. Chinese Journal of Applied Ecology, 2020, 31(6): 1817-1826] [20] Stock BC, Jackson AL, Ward EJ, et al. Analyzing mi-xing systems using a new generation of Bayesian tracer mixing models. PeerJ, 2018, 6: e5096 [21] Wang J, Lu N, Fu B. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 2019, 666: 685-693 [22] 郝兰春, 王焱, 毕建杰, 等. 不同种植方式下冬小麦土壤水分动态变化研究. 安徽农业科学, 2009, 37(22): 10451-10453 [Hao L-C, Wang Y, Bi J-J, et al. Study on dynamics of soil water content of winter wheat to different cropping patterns. Journal of Anhui Agricultural Sciences, 2009, 37(22): 10451-10453] [23] 贾剑波. 北京山区典型森林生态系统水分运动过程与机制研究. 博士论文. 北京: 北京林业大学, 2016 [Jia J-B. Water Movement Process and Mechanism Analysis on Forest Ecosystems in Beijing Mountainous Area. PhD Thesis. Beijing: Beijing Forestry University, 2016] [24] 吴华武, 李小雁, 蒋志云, 等. 基于δD和δ18O的青海湖流域芨芨草水分利用来源变化研究. 生态学报, 2015, 24(35): 8174-8183 [Wu H-W, Li X-Y, Jiang Z-Y, et al. Variations in water use for Achnatherum splendens in Lake Qinghai watershed, based on δD and δ18O. Acta Ecologica Sinica, 2015, 24(35): 8174-8183] [25] Che C, Zhang M, Argiriou AA, et al. The stable isotopic composition of different water bodies at the soil-plant-atmosphere continuum (SPAC) of the western Loess Plateau, China. Water, 2019, 11: 1742 [26] Gierke C, Newton BT, Phillips FM. Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): A stable isotope study. Hydrogeo-logy Journal, 2016, 24: 805-818 [27] 马小军, 靳静静, 司炳成, 等. 提取方法对土壤水同位素和植物水源分割的影响. 应用生态学报, 2019, 30(6): 1840-1846 [Ma X-J, Jin J-J, Si B-C, et al. Effects of extraction methods on soil water isotope and plant water source segmentation. Chinese Journal of Applied Ecology, 2019, 30(6): 1840-1846] [28] Orlowski N, Pratt DL, Mcdonnell JJ. Intercomparison of soil pore water extraction methods for stable isotope analysis. Hydrological Processes, 2016, 30: 3434-3449 [29] Barbeta A, Gimeno TE, Clave L, et al. An explanation for the isotopic offset between soil and stem water in a temperate tree species. New Phytologist, 2020, 227: 766-779 [30] Newberry SL, Nelson DB, Kahmen A. Cryogenic vacuum artifacts do not affect plant water-uptake studies using stable isotope analysis. Ecohydrology, 2017, 10: e1892 [31] Goldsmith GR, Muñoz-Villers LE, Holwerda F, et al. Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrology, 2012, 5: 779-790 [32] February EC, Higgins SI. The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. South African Journal of Botany, 2010, 76: 517-523 [33] 邓文平, 余新晓, 贾国栋, 等. 雨季北京山区3种典型植物的水分来源. 干旱区研究, 2014, 31(4): 649-657 [Deng W-P, Yu X-X, Jia G-D, et al. Water sources of three typical plants in the Beijing mountain areas in rainy season. Arid Zone Research, 2014, 31(4): 649-657] [34] 刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏和栓皮栎的水分利用特征. 林业科学, 2016, 52(9): 22-30 [Liu Z-Q, Yu X-X, Jia G-D, et al. Water use characteristics of Platycladus orientalis and Quercus variabilis in Beijing mountain area. Scientia Silvae Sinicae, 2016, 52(9): 22-30] [35] Jia G, Liu Z, Chen L, et al. Distinguish water utilization strategies of trees growing on earth-rocky mountai-nous area with transpiration and water isotopes. Ecology and Evolution, 2017, 7: 10640-10651 [36] 刘自强, 余新晓, 贾国栋, 等. 北京土石山区典型植物水分来源. 应用生态学报, 2017, 28(7): 2135-2142 [Liu Z-Q, Yu X-X, Jia G-D, et al. Water source of typical plants in rocky mountain area of Beijing, China. Chinese Journal of Applied Ecology, 2017, 28(7): 2135-2142] [37] Liu Z, Yu X, Jia G, et al. Contrasting water sources of evergreen and deciduous tree species in rocky mountain area of Beijing, China. Catena, 2017, 150: 108-115 [38] 刘自强, 余新晓, 邓文平, 等. 华北山区油松侧柏降雨前后水分来源. 中国水土保持科学, 2016, 14(2): 111-119 [Liu Z-Q, Yu X-X, Deng W-P, et al. Water sources of Pinus tabuliformis and Platycladus orientalis before and after rain in northern China. Science of Soil and Water Conservation, 2016, 14(2): 111-119] |