[1] 闫海冰, 韩有志, 杨秀清, 等. 华北山地典型天然次生林群落的树种空间分布格局及其关联性. 生态学报, 2010, 30(9): 2311-2321 [Yan H-B, Han Y-Z, Yang X-Q, et al. Spatial distribution patterns and associations of tree species in typical natural secondary mountain forest communities of Northern China. Acta Ecologica Sinica, 2010, 30(9): 2311-2321] [2] 董灵波, 田栋元, 刘兆刚. 大兴安岭次生林空间分布格局及其尺度效应. 应用生态学报, 2020, 31(5): 1476-1486 [Dong L-B, Tian D-Y, Liu Z-G. Spatial distribution pattern and scale effect of secondary forests in Daxing'anling, China. Chinese Journal of Applied Ecology, 2020, 31(5): 1476-1486] [3] 姚际托, 陈阳, 肖玖军, 等. 贵州荔波森林景观格局现状与分析. 贵州科学, 2020, 38(3): 42-46 [Yao J-T, Chen Y, Xiao J-J, et al. Present situation and analysis of forest landscape pattern in Libo, Guizhou. Guizhou Science, 2020, 38(3): 42-46] [4] 高辉, 方江平, 刘丽娟, 等. 西藏原始林芝云杉林的空间结构与环境的关系. 广西师范大学学报: 自然科学版, 2020, 38(5): 95-103 [Gao H, Fang J-P, Liu L-J, et al. Relationship between spatial structure and environment of original Picea likiangensis var. linzhiensis forest in Tibet. Journal of Guangxi Normal University: Natural Science, 2020, 38(5): 95-103] [5] 罗庆辉, 徐泽源, 许仲林. 天山雪岭云杉林生物量估测及空间格局分析. 生态学报, 2020, 40(15): 5288-5297 [Luo Q-H, Xu Z-Y, Xu Z-L. Estimation and spatial pattern analysis of biomass of Picea schrenkiana forests. Acta Ecologica Sinica, 2020, 40(15): 5288-5297] [6] 贺丹妮, 杨华, 温静, 等. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布. 应用生态学报, 2020, 31(6): 1916-1922 [He D-N, Yang H, Wen J, et al. Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce fir mixed stand in Changbai Mountains, China. Chinese Journal of Applied Ecology, 2020, 31(6): 1916-1922] [7] 尉文, 闫琰, 刘晓云, 等. 太白山锐齿栎林群落结构特征. 应用生态学报, 2020, 31(6): 1923-1932 [Wei W, Yan Y, Liu X-Y, et al. Community structure of Quercus aliena var. acuteserrata forest in the Taibai Mountain, China. Chinese Journal of Applied Ecology, 2020, 31(6): 1923-1932] [8] 王安彬. 帽儿山典型森林群落优势种空间分布格局及其关联性. 山东林业科技, 2020, 50(2): 1-9 [Wang A-B. Spatial distribution pattern and interspecific relationship of dominant species in typical forest community in Mao'er Mountain. Journal of Shandong Forestry Science and Technology, 2020, 50(2): 1-9] [9] Simon A, Katzensteiner K, Gratzer G. Drivers of forest regeneration patterns in drought prone mixed-species forests in the Northern Calcareous Alps. Forest Ecology and Management, 2019, 453: 117589 [10] Jeronimo SMA, Kane VR, Churchill DJ, et al. Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada. Forest Ecology and Management, 2019, 437: 70-86 [11] 韩有志, 王政权. 森林更新与空间异质性. 应用生态学报, 2002, 13(5): 615-619 [Han Y-Z, Wang Z-Q. Spatial heterogeneity and forest regeneration. Chinese Journal of Applied Ecology, 2002, 13(5): 615-619] [12] Nathan R. Long-distance dispersal of plants. Science, 2006, 313: 786-788 [13] Druckenbrod DL, Shugart HH, Davies I. Spatial pattern and process in forest stands within the Virginia Piedmont. Journal of Vegetation Science, 2005, 16: 37-48 [14] Chen SC, Poschlod P, Antonelli A, et al. Trade-off between seed dispersal in space and time. Ecology Letters, 2020, 23: doi: 10.1111/ele.13595 [15] Guittar J, Goldberg DE, Klanderud K, et al. Quanti-fying the roles of seed dispersal, filtering, and climate on regional patterns of grassland biodiversity. Ecology, 2020, 101: e03061 [16] 霍雪莹, 康海斌, 王得祥, 等. 啮齿动物对秦岭松栎混交林建群种种子扩散格局的影响. 生态学报, 2019, 39(7): 2435-2443 [Huo X-Y, Kang H-B, Wang D-X, et al. Effects of rodents on seed dispersal patterns of constructive species in the pine-oak mixed forests of the Qinling Mountains, Shaanxi Province, China. Acta Ecologica Sinica, 2019, 39(7): 2435-2443] [17] 曹当当. 南疆几种荒漠植物固沙及种群更新能力研究. 硕士论文. 喀什: 喀什大学, 2020 [Cao D-D. Sand Fixation and Population Regeneration Ability of Several Desert Plants in Southern Xinjiang, China. Master Thesis. Kashgar: Kashgar University, 2020] [18] 赵秋玲, 杜坤, 裴会明, 等. 小陇山林区庙台槭种子扩散格局及天然更新研究. 林业科技通讯, 2018(8): 3-6 [Zhao Q-L, Du K, Pei H-M, et al. Study on the seed dispersal pattern and natural regeneration of the rare and endangered species of Acer miaotaiense P.C. Tsoong in Xiaolongshan Region. Forest Science and Technology, 2018(8): 3-6] [19] 高辉, 刘丽娟, 方江平. 建群种更新特征与典型生境异质性的关系——以色季拉山森林群落为例. 湖南师范大学: 自然科学学报, 2020, 43(3): 39-46 [Gao H, Liu L-J, Fang J-P. Relationship between renewal characteristics of constructive species and hete-rogeneity of typical habitats: Taking Sejila forest community as an example. Journal of Natural Science of Hunan Normal University, 2020, 43(3): 39-46] [20] 郑玉莹. 秦岭松栎混交林建群种更新特征与微生境异质性的关系. 硕士论文. 杨凌: 西北农林科技大学, 2018 [Zheng Y-Y. Relationship between Regenerating Characteristics and Microhabitat Heterogeneity of Pine-oak Mixed Forests in Qinling Mountains. Master Thesis. Yangling: Northwest A&F University, 2018] [21] 郑云峰, 尹准生, 唐孝甲. 树种天然更新影响因素研究. 华东森林经理, 2020, 34(2): 1-4 [Zheng Y-F, Yin Z-S, Tang X-J. Study on influencing factors of natural regeneration of tree species. East China Forest Mana-gement, 2020, 34(2): 1-4] [22] 郑金萍, 杨学东, 郭忠玲, 等. 蒙古栎林天然更新状况及影响因素研究. 北华大学学报: 自然科学版, 2015, 16(5): 652-657 [Zheng J-P, Yang X-D, Guo Z-L, et al. Characteristics and influencing factors of natural regeneration of Quercus mongolica forest. Journal of Beihua University: Natural Science, 2015, 16(5): 652-657] [23] 唐继新, 李忠国, 马跃, 等. 米老排人工林天然更新及影响因子. 南方农业学报, 2020, 51(4): 897-904 [Tang J-X, Li Z-G, Ma Y, et al. Natural regeneration and influencing factors of Mytilaria laosensis plantation. Journal of Southern Agriculture, 2020, 51(4): 897-904] [24] 祝子枭, 刘兆刚, 董灵波, 等. 环境因子对大兴安岭天然落叶松次生林主要树种更新的影响. 东北林业大学学报, 2020, 48(6): 135-141 [Zhu Z-X, Liu Z-G, Dong L-B, et al. Effects of environmental factors on regeneration of major species in larch secondary forest of Daxing'an Mountains. Journal of Northeast Forestry University, 2020, 48(6): 135-141] [25] 杨秀清, 史婵, 王旭刚, 等. 关帝山云杉次生林土壤的空间异质性及其与地形相关性. 中国水土保持科学, 2017, 15(4): 16-24 [Yang X-Q, Shi C, Wang X-G, et al. Spatial heterogeneity of soil in the secondary Picea forest of Guandi Mountain and its correlation with topography. Science of Soil and Water Conservation, 2017, 15(4): 16-24] [26] 闫海冰, 韩有志, 杨秀清, 等. 关帝山云杉天然更新与土壤有效氮素异质性的空间关联性. 应用生态学报, 2010, 21(3): 533-540 [Yan H-B, Han Y-Z, Yang X-Q, et al. Spatial relevance between natural regeneration of Picea and heterogeneity of soil available nitrogen in Guandi Mountain. Chinese Journal of Applied Ecology, 2010, 21(3): 533-540] [27] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000: 25-239 [Bao S-D. Soil and Agricultural Chemistry Analysis. 3rd Ed. Beijing: China Agriculture Press, 2000: 25-239] [28] 杨秀清, 韩有志. 关帝山次生杨桦林种群结构与立木的空间点格局. 西北植物学报, 2010, 30(9): 1895-1901 [Yang X-Q, Han Y-Z. Population structure and spatial point patterns of individuals in natural secondary poplar-birch forest in Guandi Mountain. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(9): 1895-1901] [29] Davis EL, Hager HA, Gedalof Z. Soil properties as constraints to seedling regeneration beyond alpine treelines in the Canadian Rocky Mountains. Arctic Antarctic, and Alpine Research, 2018, 50: e1415625 [30] 潘瑞炽. 植物生理学. 第7版. 北京: 高等教育出版社, 2012: 33-38 [Pan R-C. Plant Physiology. 7th Ed. Beijing: Higher Education Press, 2012: 33-38] [31] 张晓霞, 李占斌, 李鹏, 等. 黄土高原林地土壤微量元素分布和迁移特征. 应用基础与工程科学学报, 2011, 19(suppl.1): 161-169 [Zhang X-X, Li Z-B, Li P, et al. Distribution and migration characteristics of woodland trace elements in loess plateau. Journal of Basic Science and Engineering, 2011, 19(suppl.1): 161-169] [32] 仝雅娜, 丁贵杰. 铝对植物生长发育及生理活动的影响. 西部林业科学, 2008, 37(4): 56-60 [Tong Y-N, Ding G-J. Influences of aluminum on development and physiological activities of plants. Journal of West China Forestry Science, 2008, 37(4): 56-60] [33] 王兴灵, 张怡颖, 谷丰, 等. 华北土石山区土地利用类型对土壤有效态微量元素的影响. 草业科学, 2020, 37(7): 1272-1280 [Wang X-L, Zhang Y-Y, Gu F, et al. Effects of land use type on soil available trace elements in the rocky mountain area of north China. Pratacultural Science, 2020, 37(7): 1272-1280] [34] 田沐雨, 于春甲, 汪景宽, 等. 氮添加对草地生态系统土壤pH、磷含量和磷酸酶活性的影响. 应用生态学报, 2020, 31(9): 2985-2992 [Tian M-Y, Yu C-J, Wang J-K, et al. Effect of nitrogen additions on soil pH, phosphorus contents and phosphatase activities in grassland. Chinese Journal of Applied Ecology, 2020, 31(9): 2985-2992] [35] 赵维俊, 刘贤德, 金铭, 等. 祁连山青海云杉林土壤有效微量元素含量特征. 土壤通报, 2015, 46(2): 386-391 [Zhao W-J, Liu X-D, Jin M, et al. Characteristics of soil available microelements content of Picea crassifolia forest in the Qilian Mountains. Chinese Journal of Soil Science, 2015, 46(2): 386-391] [36] 杨霖, 杨程, 朱同彬, 等. 岩溶区原始林土壤微量元素含量与有效特征. 中国岩溶, 2018, 37(1): 59-66 [Yang L, Yang C, Zhu T-B, et al. Contents and availability of trace elements in soils of natural forests in karst region. Carsologica Sinica, 2018, 37(1): 59-66] [37] Brian B, James SC. Seedling survival and growth of three forest tree species: The role of spatial heteroge-neity. Ecology, 2003, 84: 1849-1861 [38] 刘奎, 黄宝榴, 陈凯, 等. 望天树天然林幼苗更新及生长与环境因子的关系. 湖南师范大学: 自然科学学报, 2018, 41(4): 47-53 [Liu K, Huang B-L, Chen K, et al. Relationship between seedling regeneration, growth and environmental factors in Parashorea chinensis natural forest. Journal of Natural Science of Hunan Normal University, 2018, 41(4): 47-53] [39] Fissore C, Dalzell BJ, Berhe AA, et al. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 2017, 149: 140-149 [40] 欧芷阳, 苏志尧, 彭玉华, 等. 桂西南喀斯特山地蚬木幼龄植株的天然更新. 应用生态学报, 2013, 24(9): 2440-2446 [Ou Z-Y, Su Z-Y, Peng Y-H, et al. Natural regeneration of young Excentrodendron hsienmu in karst mountainous region in Southwest Guangxi, China. Chinese Journal of Applied Ecology, 2013, 24(9): 2440-2446] [41] Fiona MR, Jan H, Michal B, et al. Where can palatable young trees escape herbivore pressure in a protected forest. Forest Ecology and Management, 2020, 472: doi: 10.1016/j.foreco.2020.118221 [42] 刘炜洋, 陈国富, 张彦冬. 不同林分内水曲柳天然更新及影响因子研究. 华东森林经理, 2010, 24(4): 19-23 [Liu W-Y, Chen G-F, Zhang Y-D. Natural regeneration and influencing factors of Fraxinus mandshulica in different forests. East China Forest Management, 2010, 24(4): 19-23] [43] 陈琤, 张贵文, 陆滢, 等. 模拟升温对滨海湿地盐地碱蓬生物量及其枯落物分解影响的研究. 海洋科学, 2020, 44(2): 66-75 [Chen C, Zhang G-W, Lu Y, et al. Studying and simulating the effects of global warming on Suaeda salsa population growth and its litter decomposition in the coastal wetland of the Laizhou Bay. Marine Sciences, 2020, 44(2): 66-75] |