[1] 王丽君, 程瑞梅, 肖文发, 等. 氮添加对三峡库区马尾松-栓皮栎混交林土壤微生物生物量和酶活性的影响. 应用生态学报, 2022, 33(1): 42-50 [2] 王淳, 董雪婷, 杜瑞鹏, 等. 华北落叶松与阔叶树种混合凋落叶分解过程中养分释放和酶活性变化. 应用生态学报, 2021, 32(5): 1709-1716 [3] Xiao W, Chen X, Jing X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology and Biochemistry, 2018, 123: 21-32 [4] Xu YX, Du AP, Wang ZC, et al. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. Forest Ecology and Management, 2020, 456: 117683 [5] Xu ZW, Yu GR, Zhang XY, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry, 2017, 104: 152-163 [6] Lucas-Borja ME, Hedo J, Cerdá A, et al. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine (Pinus nigra Ar. ssp. salzmannii) forest. Science of the Total Environment, 2016, 562: 145-154 [7] Yesilonis I, Szlavecz K, Pouyat R, et al. Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. Forest Ecology and Management, 2016, 370: 83-92 [8] Dong HY, Ge JF, Sun K, et al. Change in root-associa-ted fungal communities affects soil enzymatic activities during Pinus massoniana forest development in subtropical China. Forest Ecology and Management, 2021, 482: 118817 [9] 乔航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素. 生态学报, 2019, 39(6): 1887-1896 [10] 赵海燕, 徐福利, 王渭玲, 等. 秦岭地区华北落叶松人工林地土壤养分和酶活性变化. 生态学报, 2015, 35(4): 1086-1094 [11] Shi XZ, Wang JQ, Lucas-Borja ME, et al. Microbial diversity regulates ecosystem multifunctionality during natural secondary succession. Journal of Applied Ecology, 2021, 58: 2833-2842 [12] Wang JQ, Shi XZ, Lucas-Borja ME, et al. Plants, soil properties and microbes directly and positively drive ecosystem multifunctionality in a plantation chronosequence. Land Degradation & Development, 2022, 33: 3049-3057 [13] 国家林业和草原局. 中国森林资源概况(2014—2018). 北京: 中国林业出版社, 2019 [14] 郑荧枫, 王建青, 邹秉章, 等. 亚热带不同林龄杉木人工林红壤线虫群落结构特征. 林业科学, 2022, 58(2): 80-88 [15] Zhang KR, Dang HS, Tan SD, et al. Vegetation community and soil characteristics of abandoned agricultural land and pine plantation in the Qinling Mountains, China. Forest Ecology and Management, 2010, 259: 2036-2047 [16] Saiya-Cork KR, Sinsabaugh RL, Zak DR. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34: 1309-1315 [17] Valero-Mora PM. ggplot2: Elegant Graphics for Data Analysis. Journal of Statistical Software, 2010, 35: 1-3 [18] Bending GD, Turner MK, Jones JE. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry, 2002, 34: 1073-1082 [19] 李雪. 亚热带不同林龄次生林与杉木人工林土壤微生物与酶活性研究. 硕士论文. 福州: 福建师范大学, 2022 [20] 鲍勇, 高颖, 曾晓敏, 等. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系. 植物生态学报, 2018, 42(4): 508-516 [21] 梅孔灿, 程蕾, 张秋芳, 等. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响. 植物生态学报, 2020, 44(12): 1273-1284 [22] Shi XZ, Wang JQ, Müller C, et al. Dissimilatory nitrate reduction to ammonium dominates soil nitrate retention capacity in subtropical forests. Biology and Fertility of Soils, 2020, 56: 785-797 [23] Wei Y, Yu LF, Zhang JC, et al. Relationship between vegetation restoration and soil microbial characteristics in degraded karst regions: A case study. Pedosphere, 2011, 21: 132-138 [24] 王宝荣, 杨佳佳, 安韶山, 等. 黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响. 应用生态学报, 2018, 29(1): 247-259 [25] Wang YS, Cheng SL, Yu GR, et al. Response of carbon utilization and enzymatic activities to nitrogen deposition in three forests of subtropical China. Canadian Journal of Forest Research, 2015, 45: 394-401 [26] 胡琛, 贺云龙, 黄金莲, 等. 神农架4种典型针叶人工林土壤酶活性及其生态化学计量特征. 林业科学研究, 2020, 33: 143-150 [27] 陈月鹏, 李石开, 安波, 等. 亚热带树种的菌根和根外菌丝对土壤氮矿化及酶活性的影响. 应用生态学报, 2023, 34(5): 1235-1243 [28] 张富荣, 柳洋, 史常明, 等. 不同恢复年限刺槐林土壤碳、氮、磷含量及其生态化学计量特征. 生态环境学报, 2021, 30(3): 485-491 [29] Selvaraj S, Duraisamy V, Huang ZJ, et al. Influence of long-term successive rotations and stand age of Chinese fir (Cunninghamia lanceolata) plantations on soil pro-perties. Geoderma, 2017, 306: 127-134 [30] 张芸, 李惠通, 张辉, 等. 不同林龄杉木人工林土壤C∶N∶P化学计量特征及其与土壤理化性质的关系. 生态学报, 2019, 39(7): 2520-2531 [31] 王宏星, 孙晓梅, 陈东升, 等. 甘肃小陇山日本落叶松人工林不同发育阶段土壤理化性质的变化. 林业科学研究, 2012, 25(3): 294-301 [32] 裴丙, 朱龙飞, 冯志培, 等. 太行山南麓5个林龄侧柏人工林土壤酶活性季节变化. 水土保持研究, 2018, 25(2): 170-175 [33] 罗明霞, 胡宗达, 刘兴良, 等. 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性. 生态学报, 2021, 41(14): 5632-5642 [34] 莫江明, 彭少麟, Sandra B, 等. 鼎湖山马尾松林植物养分积累动态及其对人为干扰的响应. 植物生态学报, 2004, 28(6): 810-822 [35] Feng C, Ma YH, Jin X, et al. Soil enzyme activities increase following restoration of degraded subtropical forests. Geoderma, 2019, 351: 180-187 [36] Kyaschenko J, Clemmensen KE, Hagenbo A, et al. Shift in fungal communities and associated enzyme acti-vities along an age gradient of managed Pinus sylvestris stands. The ISME Journal, 2017, 11: 863-874 [37] Yao XD, Zeng WJ, Zeng H, et al. Soil microbial attri-butes along a chronosequence of Scots pine (Pinus sylvestris var. mongolica) plantations in northern China. Pedosphere, 2020, 30: 433-442 [38] 豆梦珂, 张伟东, 杨庆朋, 等. 杉木种植和磷添加对土壤微生物生物量及胞外酶活性的影响. 应用生态学报, 2023, 34(3): 631-638 [39] A’Bear AD, Jones TH, Kandeler E, et al. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme acti-vity. Soil Biology and Biochemistry, 2014, 70: 151-158 [40] 李茜, 孙亚男, 林丽, 等. 放牧高寒嵩草草地不同演替阶段土壤酶活性及养分演变特征. 应用生态学报, 2019, 30(7): 2267-2274 |