[1] 于贵瑞, 王秋凤, 杨萌, 等. 生态学的科学概念及其演变与当代生态学学科体系之商榷. 应用生态学报, 2021, 32(1): 1-15 [Yu G-R, Wang Q-F, Yang M, et al. Discussion on the scientific concept of ecology and its evolution and the contemporary ecological discipline system. Chinese Journal of Applied Ecology, 2021, 32(1): 1-15] [2] 于贵瑞, 陈智, 杨萌, 等. 大尺度陆地生态系统科学研究的理论基础及其技术体系之探讨. 应用生态学报, 2021, 32(2): 377-391 [Yu, G-R, Chen Z, Yang M, et al. Discussion on the theoretical basis and technical system of broad-scale terrestrial ecosystem science research. Chinese Journal of Applied Ecology, 2021, 32(2): 377-391] [3] 于贵瑞, 张雷明, 张扬建, 等. 大尺度陆地生态系统状态变化及其资源环境效应的立体化协同联网观测. 应用生态学报, 2021, 32(6): 2267-2274 [Yu, G-R, Zhang L-M, Zhang Y-J, et al. A coordinated three-dimensional network for observing large scale terrestrial ecosystem status changes and their resources and environment effects. Chinese Journal of Applied Ecology, 2021, 32(6): 2267-2274] [4] 于贵瑞, 杨萌, 付超, 等. 大尺度陆地生态系统管理的理论基础及其应用研究的思考. 应用生态学报, 2021, 32(3): 771-787 [Yu, G-R, Yang M, Fu C, et al. Thinking on broad-scale terrestrial ecosystem mana-gement and its theoretical fundament and practice. Chinese Journal of Applied Ecology, 2021, 32(3): 771-787] [5] Ceballos G, Ehrlich PR, Barnosky AD, et al. Accele-rated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 2015, 1(5): e1400253, doi: 10.1126/sciadv.1400253 [6] 于贵瑞, 杨萌, 陈智, 等. 大尺度区域生态环境治理及国家生态安全格局构建的技术途径和战略布局. 应用生态学报, 2021, 32(4): 1141-1153 [Yu, G-R, Yang M, Chen Z, et al. Technical approach and strategic plan for large-scale ecological and environmental governance and national ecological security pattern construction. Chinese Journal of Applied Ecology, 2021, 32(4): 1141-1153] [7] Jorgensen SE. Ecosystem theory, ecological buffer capacity, uncertainty and complexity. Ecological Modelling, 1990, 52: 125-133 [8] Jorgensen SE, Patten BC, Straskraba M. Ecosystems emerging: Toward an ecology of complex-systems in a complex future. Ecological Modelling, 1992, 62: 1-27 [9] Raupach MR, Rayner PJ, Barrett DJ, et al. Model-data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Global Change Biology, 2005, 11: 378-397 [10] Anderson GL, Hanson JD, Haas RH. Evaluating landsat thematic mapper derived vegetation indexes for estimating aboveground biomass on semiarid rangelands. Remote Sensing of Environment, 1993, 45: 165-175 [11] Shin R. Life-history evolution in Australian snakes: A path analysis. Oecologia, 1996, 107: 484-489 [12] Bee C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 2010, 329: 834-838 [13] Chen SP, Wang WT, Xu WT, et al. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4027-4032 [14] de Graaff MA, van Groenigen KJ, Six J, et al. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Global Change Biology, 2006, 12: 2077-2091 [15] Eisenhauer N, Hines J, Isbell F, et al. Plant diversity maintains multiple soil functions in future environments. eLife, 2018, 7: e41228 [16] Treseder KK. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 2008, 11: 1111-1120 [17] Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science. Nature, 2019, 566: 195-204 [18] Lewis JM, Lakshmivarahan S, Dhall S. Dynamic data assimilation: A least squares approach. Vol. 13. Cambridge, UK: Cambridge University Press, 2006 [19] Keenan TF, Davidson E, Moffat AM, et al. Using model-data fusion to interpret past trends, and quantify uncertainties in future projections of terrestrial ecosystem carbon cycling. Global Change Biology, 2012, 18: 2555-2569 [20] Xu T, White L, Hui D, et al. Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 2006, 20: GB2007 [21] He HL, Liu M, Xiao XM, et al. Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands. Journal of Geophysical Research-Biogeosciences, 2014, 119: 466-486 [22] Ren XL, He HL, Zhang L, et al. Modeling and uncertainty analysis of carbon and water fluxes in a broad-leaved Korean pine mixed forest based on model-data fusion. Ecological Modelling, 2018, 379: 39-53 [23] Ge R, He HL, Ren XL, et al. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation. Global Change Biology, 2019, 25: 938-953 [24] 于贵瑞, 陈智, 张维康, 等. 试论宏观生态系统科学研究的多学科维度基本问题及其方法体系. 应用生态学报, 2021, 32(5): 1531-1544 [Yu G-R, Chen Z, Zhang W-K, et al. Discussion of the multi-disciplinary dimensional basic problems and methodology systems of macroecosystem science research. Chinese Journal of Applied Ecology, 2021, 32(5): 1531-1544] [25] 鄂竟平. 提升生态系统质量和稳定性. 中国水利, 2020(23): 107 [E J-P. Improve ecosystem quality and stability. China Water Resources, 2020(23): 107] [26] 刘聚涛, 胡芳, 许新发, 等. 生态文明背景下生态流域综合治理规划编制探索. 中国水利, 2020(23): 24-26, 17 [Liu J-T, Hu F, Xu X-F, et al. Studies on planning formulation for comprehensive management of river basin ecology under the background of ecological civilization. China Water Resources, 2020(23): 24-26, 17] [27] Li WH. Evaluating ecological restoration technology: A new era for ecosystem protection in vulnerable ecological regions in China. Journal of Resources and Ecology, 2017, 8: 313-314 [28] Leclere D, Obersteiner M, Barrett M, et al. Bending the curve of terrestrial biodiversity needs an integrated stra-tegy. Nature, 2020, 585: 551 |